Có bao nhiêu giá trị m nguyên thuộc khoảng (−10; 10) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}}\) có đúng ba đường tiệm cận?
ĐKXĐ: \(\left\{ \begin{array}{l}x\left( {x - m} \right) \ge 0\\x \ne - 2\end{array} \right.\)
Ta có:
• \[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 - \frac{m}{x}} - \frac{1}{x}}}{{1 + \frac{2}{x}}} = 1\];
• \[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 - \frac{m}{x}} + \frac{1}{x}}}{{ - 1 - \frac{2}{x}}} = - 1\].
Suy ra đồ thị hàm số có 2 đường tiệm cận ngang y = ±1.
Do đó bài toán thỏa mãn khi đồ thị hàm số chỉ có duy nhất một tiệm cận đứng.
Ta lại có: \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \frac{{{x^2} - mx - 1}}{{\left( {x + 2} \right)\left( {\sqrt {x\left( {x - m} \right)} + 1} \right)}}\)
Để đồ thị hàm số chỉ có duy nhất một đường TCĐ thì x = −2 không là nghiệm của tử và x = −2 thuộc tập xác định của hàm số.
\( \Leftrightarrow \left\{ \begin{array}{l} - 2\left( { - 2 - m} \right) \ge 0\\{\left( { - 2} \right)^2} - m\,.\,\left( { - 2} \right) - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\2m + 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\m \ne - \frac{3}{2}\end{array} \right.\)
Mặt khác, m Î (−10; 10), m Î ℤ nên m Î {−2; −1; 0; 1; 2; …; 8; 9}.
Vậy có tất cả 12 giá trị nguyên của tham số m thỏa mãn bài toán.
Giải phương trình sau: \({7^x}\,.\,{27^{\left( {1\, - \,\frac{1}{x}} \right)}} = 3087\).
Tính tổng các nghiệm thuộc khoảng \(\left( { - \frac{\pi }{2};\;\frac{\pi }{2}} \right)\) của phương trình
4sin2 2x − 1 = 0.
Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng bao nhiêu?
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).
Tìm tất cả giá trị thực của tham số m để phương trình cos 2x − (2m + 1)cos x + m + 1 = 0 có nghiệm trên khoảng \(\left( {\frac{\pi }{2};\;\frac{{3\pi }}{2}} \right)\).
Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Cho x, y là các số thực không âm thỏa mãn: x2 − 2xy + x − 2y ≤ 0.
Tìm GTLN của M = x2 − 5y2 + 3x.
Tìm hệ số của số hạng chứa x10 trong khai triển của biểu thức \({\left( {3{x^3} - \frac{2}{{{x^2}}}} \right)^5}\)
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).
Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d Î ℝ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là: