Tính thể tích khối chóp tam giác đều có độ dài cạnh bên bằng \(a\sqrt 2 \) và độ dài cạnh đáy bằng a.
A. \(\frac{{{a^3}}}{{12}}\)
B. \(\frac{{{a^3}\sqrt 2 }}{6}\)
C. \(\frac{{{a^3}\sqrt 3 }}{6}\)
D. \(\frac{{{a^3}\sqrt 5 }}{{12}}\).
Đáp án đúng là: D
Gọi D là trung điểm của BC, H là trọng tâm tam giác ABC
Suy ra \(B{\rm{D}} = C{\rm{D}} = \frac{a}{2}\)
Vì tam giác ABC đều nên AD vừa là trung tuyến vừa là đường cao
Do đó tam giác ABD vuông tại D
Suy ra \[{\rm{AD}} = \sqrt {A{B^2} - B{{\rm{D}}^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\]
Do đó \({\rm{ }}AH = \frac{2}{3}AD = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)
Đáy hình chóp là tam giác đều cạnh a nên \({S_{ABC}} = \frac{1}{2}A{\rm{D}}.BC = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)
Tam giác SAH vuông tại H có \(SA = a\sqrt 2 ,AH = \frac{{a\sqrt 3 }}{3}\)
Suy ra \(SH = \sqrt {S{A^2} - A{H^2}} = \frac{{a\sqrt {15} }}{3}{\rm{ }}\)
Thể tích khối chóp tam giác đều là:
\(V = \frac{1}{3}{S_{ABC}} \cdot SH = \frac{1}{3} \cdot \frac{{{a^2}\sqrt 3 }}{4} \cdot \frac{{a\sqrt {15} }}{3} = \frac{{{a^3}\sqrt 5 }}{{12}}\)
Vậy đáp án cần chọn là: D.
Miền tam giác ABC kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn bệ A, B, C, D?
Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Tính xác suất để hai chiếc chọn được tạo thành một đôi.
Cho đường tròn tâm O bán kính 3 cm. Từ một điểm A cách O là 5 cm vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).
a) Chứng minh AO vuông góc với BC
b) Kẻ đường kính BD. Chứng minh rằng DC song song với OA
c) Tính chu vi và diện tích tam giác ABC.
d) Qua O kẻ đường thẳng vuông góc với BD, đường thẳng này cắt tia DC tại E. Đường thẳng AE và OC cắt nhau ở I; đường thẳng OE và AC cắt nhau ở G. Chứng minh IG là trung trực của đoạn thẳng OA.
Cho đường tròn (O) bán kính OA. Từ trung điểm M của OA vẽ dây BC vuông góc với OA. Biết độ dài đường tròn (O) là 4π (cm). Độ dài cung lớn BC là:
Trong mặt phẳng Oxy cho \(\overrightarrow a \left( {1;3} \right)\) và \(\overrightarrow b \left( { - 2;1} \right)\). Tích vô hướng \(\overrightarrow a .\overrightarrow b \) là:
Trong mặt phẳng Oxy cho điểm M(1; 1). Điểm nào sau đây là ảnh của M qua phép quay tâm O, góc quay 45°.
Tính thể tích V của khối trụ ngoại tiếp hình lập phương có cạnh bằng a.
Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.
Đỉnh của parabol y = x2 + x + m nằm trên đường thẳng \(y = \frac{3}{4}\) nếu m bằng:
Hàm số \(y = {\left( {{x^2} - 16} \right)^{ - 5}} - \ln \left( {24 - 5{\rm{x}} - {x^2}} \right)\) có tập xác định là:
Cho hai tập hợp A = (m – 1; 5) và B = (3; +∞). Tìm tất cả các giá trị thực của tham số m để A\B = ∅.
Có ba chiếc hộp, mỗi chiếc hộp chứa ba chiếc thẻ được đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một chiếc thẻ. Xác suất để ba cái thẻ được rút ra có tổng bẳng 6 là?
Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, đem lại mức lời 40 000 đồng. Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, đem lại mức lời 30 000 đồng. Xưởng có 200 kg nguyên liệu và 1 200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?