Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn:
y = cos 3x (1); y = sin (x2 + 1) (2) ;
y = tan2 x (3); y = cot x (4);
A. 1 .
B. 2
C. 3 .
D. 4
Đáp án C.
+ Xét hàm y = f(x) = cos 3x
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ Dvà f(-x) = cos (-3x) = cos 3x = f(x)
Do đó, y = f(x) = cos 3x là hàm chẵn trên tập xác định của nó.
+ Xét hàm y = g(x) = sin (x2 + 1)
TXĐ: D = R
Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)
Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.
+ Xét hàm y = h(x) = tan2 x
TXĐ: D = R \ {π / 2 + kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và h(-x) = tan2 (-x) = tan2 x = h(x)
Do đó: y = h(x) = tan2 x là hàm số chẵn trên D
+ Xét hàm y = t(x) = cot x.
TXĐ: D = R \ {kπ, k ∈ Z)
Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)
Do đó: y = t(x) = cot x là hàm số lẻ trên D.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số sau: y = cosx + cos(x)
Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x
Xét tính chẵn lẻ của hàm số y = f(x) = cos(2x + ) + sin(2x - ), ta được
Cho hàm số y = 4sin(x + ) cos(x - ) - sin2x. Kết luận nào sau đây là đúng về sự biến thiên của hàm số đã cho?
Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?