Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau có tích các chữ số của số đó chia hết cho 6.
A. 471
B. 472
C. 473
D. 474
Đáp án đúng là: D
Gọi là số tự nhiên có 3 chữ số đôi một khác nhau và tích các chữ số của nó chia hết cho 6.
Ta có: 9.9.8 = 648 số tự nhiên có ba chữ số đôi một khác nhau.
Xét trường hợp số tạo thành có tích các chữ số không chia hết cho 6.
TH1: Cả ba chữ số đều lẻ: Có (số).
TH2: Trong ba chữ số có một số lẻ không chia hết cho 3 và hai số chẵn khác 0 và 6: Có (số)
TH3: Trong ba chữ số có hai số lẻ không chia hết cho 3 và một số chẵn khác 0 và 6: Có (số).
TH4: Cả ba chữ số đều chẵn và không có hai chữ số 0;6: Có 3! = 6 (số).
Do đó, có: 648 - (60 + 54 + 54 + 6) = 474 số tự nhiên có ba chữ số đôi một khác nhau và tích các chữ số của số đó chia hết cho 6
.
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2023;2023] để đồ thị hàm số có đúng 4 đường tiệm cận?
Xét các số phức z, w thỏa mãn |z| = 3, |iw + 1 – 5i| = 4. Giá trị nhỏ nhất của bằng
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng . Góc giữa mặt bên và mặt phẳng đáy bằng
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-1;2;-3) và tiếp xúc với mặt phẳng (Oyz). Tính bán kính R của mặt cầu (S).
Từ một hộp chứa 12 quả bóng gồm 5 quả màu đỏ và 7 quả màu xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu đỏ bằng
Trong không gian Oxyz, cho bốn điểm A(1;-1;2), B(2;-1;1), C(1;1;2), D(3;3;-6). Điểm M(a;b;c) di động trên mặt phẳng (Oxy). Khi biểu thức đạt giá trị nhỏ nhất thì tổng a + b + c bằng
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Cạnh bên SC vuông góc với mặt phẳng (ABC), SC = a. Thể tích khối chóp S.ABC bằng
Trong không gian Oxyz, cho điểm M(3;1;2). Đường thẳng đi qua M, vuông góc và cắt trục Ox có phương trình là
Cho hình nón (N) có đỉnh S và đáy là đường tròn tâm (O), bán kính R, chiều cao 2R. Một mặt phẳng đi qua đỉnh và cắt đường tròn đáy theo dây cung AB có độ dài bằng bán kính. Tính sin của góc tạo bởi OA và mặt phẳng (SAB).
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). Gọi (C) là thiết diện của hình nón (N) cắt bởi mặt phẳng (P) vuông góc với trục SO tại M. Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Trong không gian Oxyz, cho hai điểm A(1;3;0) và B(5;1;-2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (P):2x – z + 1 = 0. Mặt phẳng chứa và tạo với mặt phẳng (P) một góc . Khi đó a + b + c bằng