Cho hai biểu thức \(A = \frac{x}{{\sqrt {x - 3} }}\) và \(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\) với \(x > 0,\,\,x \ne 9.\)
1) Tính giá trị của biểu thức \(A\) khi \(x = 16.\)
2) Chứng minh \(B = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
3) Tìm tất cả giá trị của \(x\) đề \(A - B < 0.\)
1) Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta có: \({\rm{\;}}A = \frac{{16}}{{\sqrt {16} - 3}} = \frac{{16}}{{4 - 3}} = 16.\)
Vậy giá trị của \(A = 16\) khi \(x = 16.\)
2) Với \(x > 0,\,\,x \ne 9,\) ta có:
\(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\)\( = \frac{{2x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}} - \frac{{\sqrt x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2x - 3 - \sqrt x + 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)
\( = \frac{{2x - \sqrt x }}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{\sqrt x \left( {2\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
Vậy với \(x > 0,\,\,x \ne 9\) thì \(B = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
3) Với \(x > 0,\,\,x \ne 9,\) ta có: \(A - B = \frac{x}{{\sqrt x - 3}} - \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}\)\( = \frac{{x - 2\sqrt x + 1}}{{\sqrt x - 3}}\)\( = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}}.\)
Để \(A - B < 0\) thì \(\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}} < 0.\,\,\,\left( * \right)\)
Ta có \({\left( {\sqrt x - 1} \right)^2} \ge 0\) với mọi \(x \ge 0.\)
Do đó từ \(\left( * \right)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x - 1 \ne 0}\\{\sqrt x - 3 < 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x \ne 1}\\{\sqrt x < 3}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{x < 9.}\end{array}} \right.\)
Kết hợp điều kiện \(x > 0,\,\,x \ne 9,\) ta có: \(0 < x < 9,\,\,x \ne 1.\)
Vậy \(0 < x < 9,\,\,x \ne 1\) thì \(A - B < 0.\)
Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( O \right),\) kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) \((B,\,\,C\) là hai tiếp điểm).
1) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.
2) Vẽ đường kính \(BD\) của đường tròn \(\left( O \right).\) Gọi \(E\) là giao điểm thứ hai của đường thẳng \(AD\) và đường tròn \(\left( O \right).\) Đường thẳng \(BC\) và đường thẳng \(AO\) cắt nhau tại \(H.\) Chứng minh \(A{B^2} = AE \cdot AD = AH \cdot AO\) và \(\widehat {HDO} = \widehat {HBE}.\)
Với các số thực dương \(x\) và \(y\) thỏa mãn \(x + y + xy = 3,\) tìm giá trị nhỏ nhất của biểu thức \(P = \frac{3}{{x + y}} - xy.\)
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Để chở 15 tấn thiết bị phục vụ Lễ kỷ niệm 70 năm chiến thắng Điện Biên Phủ, một đội vận chuyển dự định sử dụng các xe tải loại nhỏ. Do thay đổi kế hoạch, đội vận chuyển quyết định chỉ sử dụng các xe tải loại lớn. Vì vậy, số xe tải sử dụng giảm đi 2 xe so với dự định và mỗi xe tải loại lớn chở nhiều hơn mỗi xe tải loại nhỏ là 2 tấn. Hỏi đội vận chuyển sử dụng bao nhiêu xe tải loại lớn? (Biết mỗi xe tải cùng loại đều chở số tấn thiết bị bằng nhau).
2) Một bình đựng nước có dạng hình trụ với bán kính đáy là \(4\) cm và chiều cao là \(25{\rm{\;cm}}{\rm{.}}\) Tính diện tích xung quanh của bình đựng nước đó (lấy \(\pi \approx 3,14).\)