Cho hàm số :
Khảo sát và vẽ đồ thị hàm số với
Với \(m = - 4\), ta có: \(\left( C \right):y = \frac{{{x^2} - 3x - 4}}{{x - 1}}\).
1. Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
2. Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x - 4}}{{x - 1}} = + \infty .\)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3x - 4}}{{x - 1}} = - \infty .\)
Do đó, đồ thị hàm số không có tiệm cận ngang.
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x - 4}}{{x - 1}} = - \infty ,\)\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 3x - 4}}{{x - 1}} = + \infty \), do đó đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x - 4}}{{x\left( {x - 1} \right)}} = 1\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 3x - 4}}{{x - 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x - 4}}{{x - 1}} = - 2\).
Do đó, đồ thị hàm số nhận đường thẳng \(y = x - 2\) làm tiệm cận xiên.
Ta có: \(y' = \frac{{{x^2} - 2x + 7}}{{{{\left( {x - 1} \right)}^2}}} > 0,\forall x \in D.\)
Từ đây ta có bảng biến thiên:
Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Hàm số không có cực trị.
3. Đồ thị
Giao điểm của đồ thị với trục tung: \(\left( {0;4} \right).\)
Giao điểm của đồ thị với trục hoành: \(\left( {4;0} \right),\left( { - 1;0} \right).\)
Đồ thị đi qua các điểm \(\left( { - 2; - 2} \right);\left( {2; - 6} \right);\left( {3; - 2} \right);\left( {5;\frac{3}{2}} \right)\).
Đồ thị nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = x - 2\) làm tiệm cận xiên.
Ta có đồ thị hàm số:
Cho hàm số liên tục trên và có bảng biến thiên như sau:
Đồ thị của hàm số trên cắt trục hoành tại mấy điểm?
Một chất điểm chuyển động trong giây đầu tiên có phương trình như sau:
trong đó với tính bằng giây và tính bằng mét . Hỏi tại thời điểm gia tốc đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Hàm số có đồ thị hàm số như hình vẽ.
Khẳng định nào sau đây là đúng?
Cho hàm số có đồ thị là đường cong trong hình dưới đây.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hiệu số giữa giá trị cực đại và giá trị cực tiểu của hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 4\) là:
Hàm số xác định và liên tục trên có đồ thị như hình vẽ dưới đây.
Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn .
Cho hàm số liên tục trên và có bảng biến thiên như sau:
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?