IMG-LOGO

Câu hỏi:

25/10/2024 9

Cho hàm số \(y =  - {x^3} + 3{x^2} - 6x\). Khẳng định nào sau đây là đúng?


A. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)



B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).


Đáp án chính xác


C. Hàm số đã cho có một cực trị. 



D. Hàm số đã cho có hai cực trị.


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

TXĐ của hàm số là \(\mathbb{R}\).

Ta có: \(y' =  - 3{x^2} + 6x - 6 =  - 3\left( {{x^2} - 2x + 1} \right) - 3 =  - 3{\left( {x - 1} \right)^2} - 3 < 0\,\,\forall x \in \mathbb{R}\)

Vậy hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\) và hàm số không có cực trị.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai con tàu \[A\]\(B\) đang ở cùng một vĩ tuyến và cách nhau 5 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \[A\] chạy về hướng Nam với vận tốc 6 hải lí/giờ, còn tàu \[B\] chạy về vị trí hiện tại của tàu \[A\] với vận tốc 7 hải lí/giờ (tham khảo hình vẽ). Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 25/10/2024 19

Câu 2:

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 1\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(A = 2a + b\) là bao nhiêu?

Xem đáp án » 25/10/2024 18

Câu 3:

Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\).

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\)\(\left( {0; + \infty } \right)\).

b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung.

c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x =  - 1\); đường tiệm cận xiên là \(y =  - x + 2\).

d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.

Xem đáp án » 25/10/2024 11

Câu 4:

Một chất điểm ở v trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.

Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 25/10/2024 10

Câu 5:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\) là đường thẳng:

Xem đáp án » 25/10/2024 9

Câu 6:

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong bốn hàm số ở các phương án A, B, C, D. 

Xem đáp án » 25/10/2024 9

Câu 7:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\sqrt 2 \). Góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {A'C'} \) bằng:

Xem đáp án » 25/10/2024 9

Câu 8:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{ax + 1}}{{bx + c}}\) (\(a,\,b,\,c\) là các tham số) có bảng biến thiên như sau:  

a) Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số đã cho có \(2\) điểm cực trị.

c) Trên khoảng \(\left( {2; + \infty } \right)\), giá trị lớn nhất của hàm số đã cho bằng \(1\).

d) Giá trị của biểu thức \(a + b + c\) bằng \(0\)

Xem đáp án » 25/10/2024 9

Câu 9:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB\, = a\), \(AA' = a\sqrt 2 \).

a) \(\overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {CC'} \).

b) \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).

c) \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \frac{{{a^2}}}{2}\).

d) \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Xem đáp án » 25/10/2024 9

Câu 10:

Hàm số đã cho có bao nhiêu điểm cực đại?  

Xem đáp án » 25/10/2024 8

Câu 11:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số đã cho có tiệm cận đứng và tiệm cận ngang lần lượt là các đường thẳng:

Xem đáp án » 25/10/2024 8

Câu 12:

Trong không gian với hệ tọa độ \[Oxyz\], cho vectơ \(\overrightarrow u  = 2\overrightarrow i  + 3\overrightarrow j  - 7\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow u \) là: 

Xem đáp án » 25/10/2024 8

Câu 13:

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) lần lượt là trọng tâm của các tam giác \(ABC\), \(ABD\). Khi đó ta có \(\overrightarrow {EF}  = \frac{a}{b}\overrightarrow {CD} \) (với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\)). Giá trị của biểu thức \(M = a - b\) bằng bao nhiêu?

Xem đáp án » 25/10/2024 8

Câu 14:

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {1;2; - 1} \right),\,B\left( {2; - 1;3} \right)\), \(C\left( { - 2;3;3} \right)\). Điểm \(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\). Giá trị của biểu thức \(P = {a^2} + {b^2} - {c^2}\) bằng bao nhiêu?

Xem đáp án » 25/10/2024 8

Câu 15:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có đồ thị là đường cong như hình dưới đây.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 25/10/2024 7

Câu hỏi mới nhất

Xem thêm »
Xem thêm »