Hai con tàu \[A\] và \(B\) đang ở cùng một vĩ tuyến và cách nhau 5 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \[A\] chạy về hướng Nam với vận tốc 6 hải lí/giờ, còn tàu \[B\] chạy về vị trí hiện tại của tàu \[A\] với vận tốc 7 hải lí/giờ (tham khảo hình vẽ). Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần mười)?
Tại thời điểm \[t\] (giờ) sau khi xuất phát, khoảng cách giữa hai tàu là \[d\]. Khi đó, tàu \[A\] đang ở vị trí \({A_1}\) và tàu \(B\) đang ở vị trí \({B_1}\) như hình vẽ trên.
Ta có: \({d^2} = AB_1^2 + AA_1^2 = {\left( {5 - B{B_1}} \right)^2} + AA_1^2 = {\left( {5 - 7t} \right)^2} + {\left( {6t} \right)^2}\).
Suy ra \(d = \sqrt {85{t^2} - 70t + 25} \).
Xét hàm số \(f\left( t \right) = \sqrt {85{t^2} - 70t + 25} \) với \(t > 0\).
Ta có \(f'\left( t \right) = \frac{{170t - 70}}{{2\sqrt {85{t^2} - 70t + 25} }};\,\,f'\left( t \right) = 0 \Leftrightarrow t = \frac{7}{{17}}\).
Bảng biến thiên của hàm số \(f\left( t \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:
Từ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right) = \frac{{6\sqrt {85} }}{{17}}\) tại \(t = \frac{7}{{17}}\).
Vậy sau \(\frac{7}{{17}} \approx 0,4\) giờ thì khoảng cách giữa hai tàu là bé nhất.
Đáp số: \(0,4\).
Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\).
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\).
b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung.
c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x = - 1\); đường tiệm cận xiên là \(y = - x + 2\).
d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{ax + 1}}{{bx + c}}\) (\(a,\,b,\,c\) là các tham số) có bảng biến thiên như sau:
a) Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).
b) Hàm số đã cho có \(2\) điểm cực trị.
c) Trên khoảng \(\left( {2; + \infty } \right)\), giá trị lớn nhất của hàm số đã cho bằng \(1\).
d) Giá trị của biểu thức \(a + b + c\) bằng \(0\).
Một chất điểm ở vị trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.
Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?
Đường cong trong hình dưới đây là đồ thị của hàm số nào trong bốn hàm số ở các phương án A, B, C, D.
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] có đồ thị là đường cong như hình dưới đây.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?