Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.
Đáp án đúng là: B
Đường thẳng \(y = m\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt khi \( - \sqrt 2 < m < - 1.\)
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:
\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)
trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới.
Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng: