Ta có: \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) \Rightarrow {\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}\left( {{{\overrightarrow {AC} }^2} + 2\overrightarrow {AC} .\overrightarrow {BD} + {{\overrightarrow {BD} }^2}} \right)\)
\( = \frac{1}{4}\left( {2{a^2} + 2\overrightarrow {AC} .\overrightarrow {BD} } \right).\)
Mà: \(\overrightarrow {AC} .\overrightarrow {BD} = \overrightarrow {AC} .\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = \overrightarrow {AC} .\overrightarrow {AD} - \overrightarrow {AC} .\overrightarrow {AB} \)
\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AD} } \right|.\cos 60^\circ - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos 60^\circ = 0.\)
Suy ra \({\left| {\overrightarrow {MN} } \right|^2} = \frac{1}{4}.2{a^2} = \frac{{{a^2}}}{2}\)\( \Rightarrow \left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 2 }}{2}.\)
Ta có: \(\overrightarrow {AC} .\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} .\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} + \overrightarrow {AC} .\overrightarrow {BD} } \right) = \frac{{{a^2}}}{2}.\)
Khi đó, \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {MN} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {MN} } \right|}} = \frac{{\frac{{{a^2}}}{2}}}{{a.\frac{{a\sqrt 2 }}{2}}} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right) = \frac{{\sqrt 2 }}{2}.\)
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới.
Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng: