Gọi \(x\) là giá bán thực tế của mỗi quả bưởi Đoan Hùng \(\left( {30000 \le x \le 50000} \right)\), đơn vị: đồng.
Theo đề ta có:
Nếu bán với giá \(50000\) đồng thì bán được \(40\) quả bưởi
Giảm giá \(5000\) đồng thì bán được thêm \[50\] quả.
Giảm giá \(50000 - x\) thì bán được thêm bao nhiêu quả?
Khi đó, số quả bưởi được bán thêm là: \(\left( {50000 - x} \right)\frac{{50}}{{5000}} = \frac{1}{{100}}\left( {50000 - x} \right)\).
Do đó, số quả bưởi bán được tương ứng với giá bán \(x\):
\(40 + \frac{1}{{100}}\left( {50000 - x} \right) = \frac{{ - 1}}{{100}}x + 540\).
Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng).
Ta có: \(F\left( x \right) = \left( {\frac{{ - 1}}{{100}}x + 540} \right)\left( {x - 30000} \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\).
Lúc này, bài toán trở thành tìm GTLN của hàm số:
\(F\left( x \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\) với \(30000 \le x \le 50000\).
\(F'\left( x \right) = \frac{{ - 1}}{{50}}x + 840\)
\(F'\left( x \right) = 0 \Leftrightarrow \frac{{ - 1}}{{50}}x + 840 = 0 \Leftrightarrow x = 42000\).
Vì hàm \(F\left( x \right)\) liên tục trên \(\left[ {30000;\,50000} \right]\) nên ta có:
\(F\left( {30000} \right) = 0\)
\(F\left( {42000} \right) = 1440000\)
\(F\left( {50000} \right) = 800000\).
Vậy với \(x = 42000\) thì \(F\left( x \right)\) đạt GTLN.
Vậy để cửa hàng thu được lợi nhuận lớn nhất thì giá bán thực tế của mỗi quả bưởi Đoan Hùng là \(42000\) đồng.
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:
\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)
trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới.
Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Đồ thị của hàm số trên cắt trục hoành tại mấy điểm?