IMG-LOGO

Câu hỏi:

26/10/2024 15

Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá \(50000\) đồng/ quả. Với giá bán này thì cửa hàng chỉ bán được \(40\) quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả \(5000\) đồng thì số bưởi bán được tăng thêm là \[50\] quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả bưởi là \(30000\) đồng.

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) là giá bán thực tế của mỗi quả bưởi Đoan Hùng \(\left( {30000 \le x \le 50000} \right)\), đơn vị: đồng.

Theo đề ta có:

Nếu bán với giá \(50000\) đồng thì bán được \(40\) quả bưởi

Giảm giá \(5000\) đồng thì bán được thêm \[50\] quả.

Giảm giá \(50000 - x\) thì bán được thêm bao nhiêu quả?

Khi đó, số quả bưởi được bán thêm là: \(\left( {50000 - x} \right)\frac{{50}}{{5000}} = \frac{1}{{100}}\left( {50000 - x} \right)\).

Do đó, số quả bưởi bán được tương ứng với giá bán \(x\):

\(40 + \frac{1}{{100}}\left( {50000 - x} \right) = \frac{{ - 1}}{{100}}x + 540\).

Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng).

Ta có: \(F\left( x \right) = \left( {\frac{{ - 1}}{{100}}x + 540} \right)\left( {x - 30000} \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\).

Lúc này, bài toán trở thành tìm GTLN của hàm số:

\(F\left( x \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\) với \(30000 \le x \le 50000\).

\(F'\left( x \right) = \frac{{ - 1}}{{50}}x + 840\)

\(F'\left( x \right) = 0 \Leftrightarrow \frac{{ - 1}}{{50}}x + 840 = 0 \Leftrightarrow x = 42000\).

Vì hàm \(F\left( x \right)\) liên tục trên \(\left[ {30000;\,50000} \right]\) nên ta có:

\(F\left( {30000} \right) = 0\)

\(F\left( {42000} \right) = 1440000\)

\(F\left( {50000} \right) = 800000\).

Vậy với \(x = 42000\) thì \(F\left( x \right)\) đạt GTLN.

Vậy để cửa hàng thu được lợi nhuận lớn nhất thì giá bán thực tế của mỗi quả bưởi Đoan Hùng là \(42000\) đồng.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)

a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m =  - 4.\)

b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).

Xem đáp án » 26/10/2024 17

Câu 2:

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left( {{x^2} - 2} \right){e^{2x}}\) trên đoạn \(\left[ { - 1;2} \right]\) bằng:

Xem đáp án » 26/10/2024 16

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Xem đáp án » 26/10/2024 16

Câu 4:

Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)?

Xem đáp án » 26/10/2024 16

Câu 5:

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,CD\). Tính \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right)\).

Xem đáp án » 26/10/2024 16

Câu 6:

Hiệu số giữa giá trị cực đại và giá trị cực tiểu của hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 4\) là:

Xem đáp án » 26/10/2024 15

Câu 7:

Giá trị lớn nhất \(M\), giá trị nhỏ nhất \(m\) của hàm số \(y = {\sin ^4}x - 4{\sin ^2}x + 5\) là:

Xem đáp án » 26/10/2024 15

Câu 8:

Điểm nào sau đây thuộc đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\)?

Xem đáp án » 26/10/2024 15

Câu 9:

Cho hàm số \(y = f(x)\) liên tục và có đồ thị hàm số trên đoạn \(\left[ { - 2;4} \right]\) như hình vẽ dưới đây.

Tổng giá trị lớn nhất và nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;4} \right]\) bằng:

Xem đáp án » 26/10/2024 14

Câu 10:

Cho hình lập phương \(ABCD.A'B'C'D'\). Có bao nhiêu vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương bằng vectơ \(\overrightarrow {BC} \)?

Xem đáp án » 26/10/2024 14

Câu 11:

Hàm số nào dưới đây đạt cực đại tại \(x = 1\)?

Xem đáp án » 26/10/2024 13

Câu 12:

Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:

\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)

trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).

Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?

Xem đáp án » 26/10/2024 13

Câu 13:

Hàm số \(y = f(x)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ dưới đây.

Tìm giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 2;2} \right]\).

Xem đáp án » 26/10/2024 13

Câu 14:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới.

Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng:

Xem đáp án » 26/10/2024 13

Câu 15:

Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x - 2}}{{x + 1}}\) là đường thẳng:

Xem đáp án » 26/10/2024 13

Câu hỏi mới nhất

Xem thêm »
Xem thêm »