Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.
Giá trị cực đại của hàm số đã cho bằng
Đáp án đúng là: A
Dựa vào đồ thị, ta suy ra hàm số đã cho đạt cực đại tại điểm \[x = 0\] và giá trị cực đại .
Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (với \(a,\,m \ne 0\)) có đồ thị là đường cong như hình dưới đây.
Tiệm cận xiên của đồ thị hàm số là đường thẳng
Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\) và \(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).
a) \(\overrightarrow {GI} + \overrightarrow {JG} = \overrightarrow 0 \).
b) \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {IJ} \).
c) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
d) \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số \[y = f\left( x \right)\] có đồ thị hàm số như hình vẽ dưới đây.
Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;\,4} \right]\) bằng bao nhiêu?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
a) Hàm số đã cho đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).
b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 2\).
c) Trên đoạn \(\left[ {0;\,2} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(0\).
d) Phương trình \(3f\left( x \right) + 4 = 0\) có 3 nghiệm.
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = AD = 1\) và \(AA' = 2\).
a) \(\overrightarrow {AD'} = \overrightarrow {BC'} \).
b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).
c) \(\overrightarrow {AC'} + \overrightarrow {CA'} + 2\overrightarrow {C'C} = \overrightarrow 0 \).
d) \(\overrightarrow {AD} \cdot \overrightarrow {A'B'} = 2\).
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \(ABCD\), mặt phẳng \(\left( {ABCD} \right)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,\,EB,\,EC,\,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.
Trọng lượng của chiếc xe ô bằng bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)? Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N và trọng lượng của khung sắt là \(2\,700\) N.
Cho hình chóp tứ giác \(S.ABCD\).
Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng \(\left( {SCD} \right)\)?