IMG-LOGO

Câu hỏi:

26/10/2024 5

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB = a\)\(AA' = a\sqrt 2 \). Số đo góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {BC'} \) bằng bao nhiêu độ?

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \left( {\overrightarrow {AB}  + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC}  + \overrightarrow {CC'} } \right)\)

\( = \overrightarrow {AB}  \cdot \overrightarrow {BC}  + \overrightarrow {AB}  \cdot \overrightarrow {CC'}  + \overrightarrow {BB'}  \cdot \overrightarrow {BC}  + \overrightarrow {BB'}  \cdot \overrightarrow {CC'} \)

\( =  - \overrightarrow {BA}  \cdot \overrightarrow {BC}  + 0 + 0 + \overrightarrow {BB'}  \cdot \overrightarrow {BB'} \)

\( =  - BA \cdot BC \cdot \cos \widehat {ABC} + {\overrightarrow {BB'} ^2}\)

\( =  - a \cdot a \cdot \cos 60^\circ  + {\left( {a\sqrt 2 } \right)^2} =  - \frac{{{a^2}}}{2} + 2{a^2} = \frac{{3{a^2}}}{2}\).

Khi đó, \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'}  \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3  \cdot a\sqrt 3 }} = \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Đáp số: \(60\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 26/10/2024 7

Câu 2:

Cho đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \(c \ne 0\)) có đồ thị như hình dưới đây.

Biết rằng \(a\) là số thực dương, hỏi trong các số \(b,c,d\) có bao nhiêu số dương?

Xem đáp án » 26/10/2024 7

Câu 3:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Giá trị cực đại của hàm số đã cho bằng

Xem đáp án » 26/10/2024 6

Câu 4:

Cho hàm số \[y = f\left( x \right)\]  có đồ thị hàm số như hình vẽ dưới đây.

 

Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;\,4} \right]\) bằng bao nhiêu?

Xem đáp án » 26/10/2024 6

Câu 5:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ sau:

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

Xem đáp án » 26/10/2024 6

Câu 6:

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (với \(a,\,m \ne 0\)) có đồ thị là đường cong như hình dưới đây. 

Tiệm cận xiên của đồ thị hàm số là đường thẳng

Xem đáp án » 26/10/2024 6

Câu 7:

Đồ thị hàm số \(y =  - {x^3} - x + 2\) là đường cong nào trong các đường cong sau?

Xem đáp án » 26/10/2024 6

Câu 8:

Cho hình chóp tứ giác \(S.ABCD\).

Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng \(\left( {SCD} \right)\)?

Xem đáp án » 26/10/2024 6

Câu 9:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?

Xem đáp án » 26/10/2024 6

Câu 10:

Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA}  = \overrightarrow a \), \(\overrightarrow {CB}  = \overrightarrow b \), \(\overrightarrow {AA'}  = \overrightarrow c \). Khẳng định nào sau đây đúng?

Xem đáp án » 26/10/2024 6

Câu 11:

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)\(AB = AD = 1\)\(AA' = 2\).

a) \(\overrightarrow {AD'}  = \overrightarrow {BC'} \).

b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).

c) \(\overrightarrow {AC'}  + \overrightarrow {CA'}  + 2\overrightarrow {C'C}  = \overrightarrow 0 \).

d) \(\overrightarrow {AD}  \cdot \overrightarrow {A'B'}  = 2\).

Xem đáp án » 26/10/2024 6

Câu 12:

Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\)\(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).  

a) \(\overrightarrow {GI}  + \overrightarrow {JG}  = \overrightarrow 0 \).

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {IJ} \).

c) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

d) \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).

Xem đáp án » 26/10/2024 6

Câu 13:

Cho hàm số \(y = \frac{{3x + 1}}{{1 - x}}\). Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 5

Câu 14:

Trên đoạn \(\left[ {1;\,\,5} \right]\), giá trị lớn nhất của hàm số \[f\left( x \right) = \sqrt {11 - 2x} \] bằng

Xem đáp án » 26/10/2024 5

Câu 15:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

a) Hàm số đã cho đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 2\).

c) Trên đoạn \(\left[ {0;\,2} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(0\).

d) Phương trình \(3f\left( x \right) + 4 = 0\) có 3 nghiệm.

Xem đáp án » 26/10/2024 5