Cho hình lăng trụ \(ABC.A'B'C'\) có hai đáy là các tam giác đều như hình dưới.
Góc giữa hai vectơ \(\overrightarrow {BC} \) và \(\overrightarrow {A'C'} \) bằng
Đáp án đúng là: B
Vì \(ABC.A'B'C'\) là hình lăng trụ nên \(\overrightarrow {BC} = \overrightarrow {B'C'} \).
Do đó, \(\left( {\overrightarrow {BC} ,\,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {B'C'} ,\,\overrightarrow {A'C'} } \right) = 180^\circ - \widehat {B'C'A'}\).
Mà tam giác \(A'B'C'\) đều nên \(\widehat {B'C'A'} = 60^\circ \). Vậy \(\left( {\overrightarrow {BC} ,\,\overrightarrow {A'C'} } \right) = 120^\circ \).
Ngân có một tấm giấy màu có dạng nửa hình tròn bán kính 8 cm. Ngân cần cắt từ tấm giấy màu này ra một tấm giấy hình chữ nhật có một cạnh thuộc đường kính của nửa hình tròn (xem hình dưới) sao cho diện tích của tấm bìa được cắt ra là lớn nhất. Giá trị lớn nhất của diện tích tấm bìa đó là bao nhiêu centimét vuông?
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới?
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\) và có bảng biến thiên như sau:
a) Hàm số \(y = f\left( x \right)\) đồng biến trên mỗi khoảng \[\left( { - \infty ; - 4} \right)\] và \(\left( {0;\, + \infty } \right)\).
b) Giá trị cực tiểu của hàm số đã cho là \({y_{CT}} = - 6\).
c) Hàm số \(y = f\left( x \right)\) có giá trị lớn nhất bằng \(2\) và giá trị nhỏ nhất bằng \( - 6\).
d) Công thức xác định hàm số là \(y = \frac{{{x^2} + 2x + 4}}{{x + 2}}\).
Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có đồ thị như hình dưới đây.
Phương trình đường tiệm cận đứng và phương trình đường tiệm cận xiên của đồ thị đã cho là
Xác định \(a,\,b,\,c\) để hàm số \(y = \frac{{ax - 1}}{{bx + c}}\) có đồ thị như hình vẽ dưới đây.
Chọn đáp án đúng.
Cho hình lập phương \(ABCD.A'B'C'D'\).
Khẳng định nào dưới đây là đúng?
Cho hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}}\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).
b) Hàm số đã cho có 2 cực trị.
c) Đồ thị hàm số nhận điểm \(I\left( {2;2} \right)\) là tâm đối xứng.
d) Có 5 điểm thuộc đồ thị hàm số có tọa độ nguyên.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Điểm cực tiểu của hàm số đã cho là
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.
Giá trị lớn nhất của hàm số đã cho trên đoạn \[\left[ { - 1;\,1} \right]\] là:
Quan sát bảng biến thiên dưới đây và cho biết bảng biến thiên đó là của hàm số nào?