Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

26/10/2024 9

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây.

Xét hàm số \(g\left( x \right) = f\left( x \right) - x\). Hàm số \(g\left( x \right)\) có bao nhiêu điểm cực trị?

Trả lời:

verified Giải bởi Vietjack

Do hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) nên hàm số \(y = g\left( x \right)\) cũng xác định trên \(\mathbb{R}\).

Ta có \(g'\left( x \right) = f'\left( x \right) - 1\); \(g'\left( x \right) = 0\) khi \(f'\left( x \right) = 1\).

Số nghiệm của phương trình \(g'\left( x \right) = 0\) là số giao điểm của đồ thị hàm số \(y = f'\left( x \right)\) và đường thẳng \(y = 1\).

Căn cứ vào đồ thị hàm số, ta thấy phương trình \(f'\left( x \right) = 1\) hay \(g'\left( x \right) = 0\) có 4 nghiệm phân biệt. Gọi 4 nghiệm đó theo thứ tự từ bé đến lớn là \(a,\,b,\,c,\,d\).

Dựa vào vị trí của đồ thị hàm số  \(y = f'\left( x \right)\) và đường thẳng \(y = 1\), ta có bảng xét dấu \(g'\left( x \right)\) như sau:

Vậy hàm số \(g\left( x \right) = f\left( x \right) - x\) có 4 điểm cực trị.

Đáp số: 4.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ngân có một tấm giấy màu có dạng nửa hình tròn bán kính 8 cm. Ngân cần cắt từ tấm giấy màu này ra một tấm giấy hình chữ nhật có một cạnh thuộc đường kính của nửa hình tròn (xem hình dưới) sao cho diện tích của tấm bìa được cắt ra là lớn nhất. Giá trị lớn nhất của diện tích tấm bìa đó là bao nhiêu centimét vuông?

Xem đáp án » 26/10/2024 156

Câu 2:

Ông Hùng cần đóng một thùng chứa gạo có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc trưng bày gạo bán tại cửa hàng. Do các điều kiện về diện tích cửa hàng và kệ trưng bày, ông Hùng cần thùng có thể tích bằng \(2\) m3. Trên thị trường, giá tôn làm đáy thùng là 100 000 đồng/m2 và giá tôn làm thành xung quanh thùng là 50 000 đồng/m2. Hỏi ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng bao nhiêu mét để chi phí mua nguyên liệu là nhỏ nhất, biết đáy thùng là hình vuông và các mối nối không đáng kể (làm tròn kết quả đến hàng phần mười).

Xem đáp án » 26/10/2024 50

Câu 3:

Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có đồ thị như hình dưới đây.

Phương trình đường tiệm cận đứng và phương trình đường tiệm cận xiên của đồ thị đã cho là

Xem đáp án » 26/10/2024 15

Câu 4:

Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới?

Xem đáp án » 26/10/2024 14

Câu 5:

Cho hình lăng trụ \(ABC.A'B'C'\) có hai đáy là các tam giác đều như hình dưới.

Góc giữa hai vectơ \(\overrightarrow {BC} \)\(\overrightarrow {A'C'} \) bằng

Xem đáp án » 26/10/2024 14

Câu 6:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\) và có bảng biến thiên như sau:

a) Hàm số \(y = f\left( x \right)\) đồng biến trên mỗi khoảng \[\left( { - \infty ; - 4} \right)\]\(\left( {0;\, + \infty } \right)\).

b) Giá trị cực tiểu của hàm số đã cho là \({y_{CT}} =  - 6\).

c) Hàm số \(y = f\left( x \right)\) có giá trị lớn nhất bằng \(2\) và giá trị nhỏ nhất bằng \( - 6\).

d) Công thức xác định hàm số là \(y = \frac{{{x^2} + 2x + 4}}{{x + 2}}\).

Xem đáp án » 26/10/2024 14

Câu 7:

Xác định \(a,\,b,\,c\) để hàm số \(y = \frac{{ax - 1}}{{bx + c}}\) có đồ thị như hình vẽ dưới đây.

Chọn đáp án đúng.

Xem đáp án » 26/10/2024 12

Câu 8:

Cho hình lập phương \(ABCD.A'B'C'D'\). 

Khẳng định nào dưới đây là đúng?

Xem đáp án » 26/10/2024 11

Câu 9:

Giá trị nhỏ nhất của hàm số \(y = \sqrt {7 - 6x} \) trên đoạn \(\left[ { - 1;\,1} \right]\) bằng

Xem đáp án » 26/10/2024 11

Câu 10:

Cho hàm số \[y = f\left( x \right)\] có đồ thị là đường cong \(\left( C \right)\) và các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\); \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\); \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2;\,\,\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\). Hỏi mệnh đề nào sau đây đúng?

Xem đáp án » 26/10/2024 10

Câu 11:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Giá trị lớn nhất của hàm số đã cho trên đoạn \[\left[ { - 1;\,1} \right]\] là:

Xem đáp án » 26/10/2024 9

Câu 12:

Quan sát bảng biến thiên dưới đây và cho biết bảng biến thiên đó là của hàm số nào?

Xem đáp án » 26/10/2024 9

Câu 13:

Trong không gian, cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) cùng có độ dài bằng \(1\) và góc giữa hai vectơ đó bằng \(45^\circ \). Giá trị của tích vô hướng \(\left( {\overrightarrow a  + 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a  - 2\overrightarrow b } \right)\) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 9

Câu 14:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Hàm số đã cho đồng biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 26/10/2024 8

Câu 15:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Điểm cực tiểu của hàm số đã cho là

Xem đáp án » 26/10/2024 8

Câu hỏi mới nhất

Xem thêm »
Xem thêm »