PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
a) Hàm số \(y = f\left( x \right)\) đồng biến trên mỗi khoảng \[\left( { - \infty ;1} \right)\] và \(\left( {3;\, + \infty } \right)\).
b) Số điểm cực trị của hàm số đã cho là \(3\).
c) Hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng \(0\).
d) Đồ thị hàm số không có đường tiệm cận.
a) S, b) Đ, c) Đ, d) Đ.
Hướng dẫn giải
– Quan sát bảng biến thiên, ta thấy hàm số đã cho đồng biến trên mỗi khoảng \[\left( {0;1} \right)\] và \(\left( {3;\, + \infty } \right)\), do đó ý a) sai.
– Ta có \(f'\left( x \right)\) đổi dấu từ “–” sang “+” tại các điểm \(x = 0\), \(x = 3\) và đổi dấu từ “+” sang “–” tại điểm \(x = 1\). Vậy hàm số \(y = f\left( x \right)\) có 3 điểm cực trị nên ý b) đúng.
– Hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng \(0\) tại \(x = 0\) và \(x = 3\) nên ý c) đúng.
– Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên đồ thị hàm số này không có đường tiệm cận. Vậy ý d) đúng.
Cho tứ diện \(ABCD\) có \(AB,\,AC,\,AD\) đôi một vuông góc và \(AB = AC = AD = 1\). Gọi \(M\) là trung điểm của \(BC\).
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \).
b) \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 1\).
c) \(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\).
d) \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \).
Cho hàm số \(y = {e^x} - x + 3\).
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\).
b) Hàm số đã cho đạt cực đại tại \(x = 0\).
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là \(\left( {0;4} \right)\).
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Cho hình hộp \(ABCD.A'B'C'D'\).
a) Các vectơ bằng với vectơ \(\overrightarrow {AD} \) là \(\overrightarrow {BC} ,\,\,\overrightarrow {B'C'} ,\,\overrightarrow {A'D'} \).
b) Các vectơ đối của vectơ \(\overrightarrow {DB} \) là \[\overrightarrow {BD} ,\,\,\overrightarrow {D'B'} \].
c) \(\overrightarrow {AB} + \overrightarrow {DC} = - 2\overrightarrow {D'C'} \).
d) \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AC'} \).
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí \(A\). Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Đường tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
Quan sát bảng biến thiên và cho biết bảng biến thiên đó là của hàm số nào.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 5\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(M = 2a - 3b\) bằng bao nhiêu?
Cho hàm số liên tục trên và có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{x + d}}\) có đồ thị như hình vẽ.
Trong các số \(a,b,c,d\) có bao nhiêu số có giá trị dương?
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?