Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

27/10/2024 12

Một chiếc đèn chùm treo có khối lượng \(m = 3\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,\,SB,\,SC,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \) như hình dưới.

Độ lớn của lực căng cho mỗi sợi xích bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? Biết rằng gia tốc rơi tự do có độ lớn 9,8 m/s2.

Trả lời:

verified Giải bởi Vietjack

Gọi \(O\) là tâm của đáy \(ABCD\).

\(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\), \(SA = SB = SC = SD\)\(O\) là trung điểm của \(AC\)\(BD\).

Ta có: \(\widehat {ASC} = 60^\circ \), suy ra \(\widehat {ASO} = 30^\circ \).  

Hợp lực của bốn sợi xích là: 

\(\overrightarrow F  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = \left( {\overrightarrow {SA}  + \overrightarrow {SC} } \right) + \left( {\overrightarrow {SB}  + \overrightarrow {SD} } \right)\)\( = 2\overrightarrow {SO}  + 2\overrightarrow {SO}  = 4\overrightarrow {SO} \).

Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực \(\overrightarrow P \), điều đó có nghĩa là \(4\overrightarrow {SO}  = \overrightarrow P \), suy ra \(4\left| {\overrightarrow {SO} } \right| = \left| {\overrightarrow P } \right|\), hay \(SO = \frac{P}{4}\).

Độ lớn của trọng lực tác động lên đèn chùm là: \(P = mg = 3 \cdot 9,8 = 29,4\) (N).

Do đó, \(SO = \frac{{29,4}}{4} = 7,35\).

Ta có: \(SA = \frac{{SO}}{{\cos \widehat {ASO}}} = \frac{{7,35}}{{\cos 30^\circ }} = \frac{{49\sqrt 3 }}{{10}} \approx 8,5\).

Vậy độ lớn của lực căng cho mỗi sợi xích bằng khoảng 8,5 N.

Đáp số: \(8,5\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.

Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F  = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?

Xem đáp án » 27/10/2024 48

Câu 2:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?

Xem đáp án » 27/10/2024 16

Câu 3:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào sau đây là đúng?

Xem đáp án » 27/10/2024 10

Câu 4:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại

Xem đáp án » 27/10/2024 10

Câu 5:

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong các hàm số ở các phương án sau:

Xem đáp án » 27/10/2024 10

Câu 6:

Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) =  - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?

Xem đáp án » 27/10/2024 10

Câu 7:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào dưới đây là đúng?

Xem đáp án » 27/10/2024 9

Câu 8:

Trong không gian với hệ tọa độ \[Oxyz\], cho vectơ \(\overrightarrow u  = 4\overrightarrow i  - \overrightarrow j  + 6\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow u \) là: 

Xem đáp án » 27/10/2024 9

Câu 9:

Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:

Xem đáp án » 27/10/2024 9

Câu 10:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 9x + 3}}{{x + 1}}\) là đường thẳng:

Xem đáp án » 27/10/2024 9

Câu 11:

Trong không gian, cho hai vectơ \(\overrightarrow a ,\,\overrightarrow b \) tạo với nhau một góc \(60^\circ \)\(\left| {\overrightarrow a } \right| = 2\), \(\left| {\overrightarrow b } \right| = 5\). Khi đó, \(\overrightarrow a  \cdot \overrightarrow b \) bằng:

Xem đáp án » 27/10/2024 9

Câu 12:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\)có bảng biến thiên như sau:

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {0;1} \right)\).

b) Hàm số đã cho có \(3\) điểm cực trị.

c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(3\).

d) Phương trình \(f\left( x \right) + 3 = 0\) có 4 nghiệm.

Xem đáp án » 27/10/2024 9

Câu 13:

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Xem đáp án » 27/10/2024 9

Câu 14:

Trong không gian với hệ tọa độ \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\)\(A'\left( {1;\,0 & ;\,1} \right)\), \(B'\left( {3;1;\,3} \right)\), \(D'\left( {1;\, - 1;1} \right)\), \(C\left( {3;\,5;\, - 5} \right)\).

a) Tọa độ của vectơ \(\overrightarrow {A'D'} \)\(\left( {0; - 1;0} \right)\).

b) Gọi tọa độ của điểm \(B\)\(\left( {{x_B};\,{y_B};{z_B}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {BC} \) là:

\(\left( {{x_B} - 3;{y_B} - 5;{z_B} + 5} \right)\).

c) Tọa độ của điểm \(B\)\(\left( {3;6; - 5} \right)\).

d) Tọa độ của vectơ tổng \(\overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {DD'} \)\(\left( { - 2;\, - 7;6} \right)\).

Xem đáp án » 27/10/2024 9

Câu 15:

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) là các điểm lần lượt thuộc các cạnh \(AB,\,CD\) sao cho \(AE = \frac{1}{3}AB,\,CF = \frac{1}{3}CD\). Khi biểu diễn vectơ \(\overrightarrow {EF} \) theo ba vectơ \(\overrightarrow {AB} ,\,\overrightarrow {AD} ,\,\overrightarrow {BC} \) ta được: \(\overrightarrow {EF}  = \frac{a}{b}\overrightarrow {AB}  + \frac{c}{d}\overrightarrow {AD}  + \frac{r}{s}\overrightarrow {BC} \) (với \(\frac{a}{b},\,\frac{c}{d},\,\frac{r}{s}\) là các phân số tối giản và \(a,b,c,d,r,s \in \mathbb{Z}\)). Ta tính được giá trị của biểu thức \(M = \frac{a}{b} + \frac{c}{d} + \frac{r}{s}\) bằng \(\frac{x}{y}\) (với \(\frac{x}{y}\) là phân số tối giản và \(x,\,y \in \mathbb{Z}\)). Khi đó, giá trị của biểu thức \(P = x + y\) bằng bao nhiêu?

Xem đáp án » 27/10/2024 9

Câu hỏi mới nhất

Xem thêm »
Xem thêm »