Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;3} \right]\) như hình vẽ dưới đây. Khẳng định nào sau đây là đúng?
Đáp án đúng là: A
Quan sát bảng biến thiên, ta thấy:
Xét trên đoạn \(\left[ { - 1;3} \right]\), giá trị lớn nhất của hàm số là \(f\left( 0 \right) = 5\).
Vậy \(\mathop {\max }\limits_{[ - 1;3]} \)\[f\left( x \right) = f\left( 0 \right)\].
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ:
Đồ thị hàm số đã cho có đường tiệm cận đứng là đường thẳng: