A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) với \(O\) là điểm bất kì.
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).
D. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
Đáp án đúng là: A
Có \(M,N,G\) lần lượt là trung điểm \(AB,CD,MN\). Theo quy tắc trung điểm, ta có:
\(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} \); \(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \); \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
Suy ra \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \) hay \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).
Với \(O\) là điểm bất kì, ta có:
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OG} + \overrightarrow {GA} + \overrightarrow {OG} + \overrightarrow {GB} + \overrightarrow {OG} + \overrightarrow {GC} + \overrightarrow {OG} + \overrightarrow {GD} \)
\( = 4\overrightarrow {OG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)\( = 4\overrightarrow {OG} \).
Vậy đáp án A sai và các đáp án B, C, D đúng.
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?