Bảng biến thiên trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A.\(y = \frac{{x + 3}}{{x - 1}}\).
B.\(y = \frac{{ - x - 2}}{{x - 1}}\).
C.\(y = \frac{{ - x + 3}}{{x - 1}}\).
D.\(y = \frac{{ - x - 3}}{{x - 1}}\).
Đáp án đúng là: C
Nhìn vào bảng biến thiên ta thấy ngay tiệm cận đứng \(x = 1\), tiệm cận ngang \(y = - 1\).
Suy ra loại đáp án A.
Nhìn vào bảng biến thiên, hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
\(y = \frac{{ - x - 2}}{{x - 1}}\) có \(ad - bc = 3 > 0\). Loại đáp án B.
\(y = \frac{{ - x - 3}}{{x - 1}}\) có \(ad - bc = 4 > 0\). Loại đáp án D.
\(y = \frac{{ - x + 3}}{{x - 1}}\) có \(ad - bc = - 2 < 0\). </>
Chọn đáp án C.
I. Nhận biết
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
II. Thông hiểu
Cho hàm số y = f(x) = ax3 + bx2 + cx + d có bảng biến thiên sau:
Đồ thị nào trong các phương án A, B, C, D thể hiện hàm số y = f(x)?
Cho hàm số \[y = \frac{{ax - b}}{{x - 1}}\] có đồ thị như hình vẽ dưới đây:
Khẳng định nào sau đây đúng?
Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên dưới.
Mệnh đề nào dưới đây đúng?
Tọa độ điểm M thuộc đồ thị (C) của hàm số \(y = \frac{{2x - 1}}{{x - 1}}\) sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng 1 là
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?
Hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) có bảng biến thiên nào dưới đây. Chọn đáp án đúng?