Trong không gian \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 6}}{1} = \frac{{y - 4}}{{ - 4}} = \frac{{z - 4}}{1}\] và \[{d_2}:\frac{{x - 2}}{1} = \frac{{y - 2}}{2} = \frac{z}{{ - 2}}\]. Viết phương trình đường thẳng \[\Delta \] là đường vuông góc chung của hai đường thẳng \[{d_1}\] và \[{d_2}\].
A. \[\frac{{x - 4}}{8} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 4}}.\]
B. \[\frac{{x - 4}}{9} = \frac{{y - 3}}{2} = \frac{{z - 2}}{{ - 1}}.\]
C. \[\frac{{x - 4}}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}.\]
D. \[\frac{{x - 4}}{2} = \frac{{y - 3}}{3} = \frac{{z - 2}}{4}.\]
Đáp án đúng là: C
Giả sử \[A = \Delta \cap {d_1}\], \[B = \Delta \cap {d_2}\].
Ta có: \[A \in {d_1}\] nên \[A\left( {t + 6; - 4t + 4;t + 4} \right)\], \[B \in {d_2}\] nên \[B\left( {a + 2;2a + 2; - 2a} \right)\].
Suy ra \[\overrightarrow {AB} = \left( {a - t - 4;2a + 4t - 2; - 2a - t - 4} \right)\].
Vì \[\overrightarrow {AB} \bot {d_1},\overrightarrow {AB} \bot {d_2}\] nên ta có:
\[\left\{ \begin{array}{l}\overrightarrow {AB} \bot {\overrightarrow u _{{d_1}}} = 0\\\overrightarrow {AB} \bot {\overrightarrow u _{{d_2}}} = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a - t - 4 + \left( { - 4} \right)\left( {2a + 4t - 2} \right) - 2a - t - 4 = 0\\a - t - 4 + 2\left( {2a + 4t - 2} \right) - 2\left( { - 2a - t - 4} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 9a - 18t = 0\\9a + 9t = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\t = 0\end{array} \right.\]
Suy ra \[A\left( {6;4;4} \right)\] và \[B\left( {2;2;0} \right)\].
Do đường thẳng \[\Delta \] đi qua \[A\] và \[B\] nên có vectơ chỉ phương
\[\overrightarrow u = \overrightarrow {AB} = \left( { - 4; - 2; - 4} \right) = - 2\left( {2;1;2} \right)\].
Gọi \[I\] là trung điểm của đoạn thẳng \[AB\] nên tọa độ điểm \[I\left( {4;3;2} \right)\].
Do đó, phương trình đường thẳng \[\Delta \] là \[\frac{{x - 4}}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}.\]
Trong hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {5; - 3;6} \right)\]; \[B\left( {5; - 1; - 5} \right)\]. Tìm một vectơ chỉ phương của đường thẳng \[AB\].
Tìm tất cả các giá trị của tham số \[m\] để đường thẳng \[d:\frac{{x - 2}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{z}{1}\] song song với mặt phẳng \[\left( P \right):2x + \left( {1 - 2m} \right)y + {m^2}z + 1 = 0.\]
Phương trình đường thẳng \[\Delta \] đi qua \[A\left( {2;3;0} \right)\] và vuông góc với mặt phẳng \[\left( P \right):x + 3y - z + 5 = 0\] là
Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = 3\end{array} \right.\] và mặt phẳng \[\left( \alpha \right):x + y + z - 1 = 0\] và điểm \[G\left( {\frac{2}{3};1;\frac{2}{3}} \right)\]. Viết phương trình đường thẳng \[\Delta \]cắt \[d\] và \[\left( \alpha \right)\] lần lượt tại \[M,N\] sao cho tam giác \[OMN\] nhận \[G\] làm trọng tâm.
Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 + t\\z = 4 + 5t\end{array} \right.\]. Điểm nào sau đây thuộc đường thẳng \[d\]?
Trong hệ tọa độ \[Oxyz\], phương trình đường thẳng đi qua hai điểm \[A\left( {1;2;3} \right)\] và \[B\left( {5;4; - 1} \right)\] là
Trong hệ tọa độ \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\] và \[{d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\]. Xét vị trí tương đối của hai đường thẳng đã cho
Trong hệ tọa độ \[Oxyz\], cho tam giác \[ABC\] có \[A\left( { - 1;3;2} \right)\], \[B\left( {2;0;5} \right)\], \[C\left( {0; - 2;1} \right).\] Phương trình đường trung tuyến \[AM\] của tam giác \[ABC\] là
Cho đường thẳng \[d:\frac{{x + 1}}{{ - 2}} = \frac{{y - 5}}{2} = \frac{{z - 2}}{1}\] và mặt phẳng \[\left( P \right):\]\[3x - 4y + 14z - 5 = 0\]. Tìm khẳng định đúng?
Trong không gian với hệ tọa độ \[Oxyz\], cho ba điểm \[A\left( {0; - 1;3} \right)\], \[B\left( {1;0;1} \right)\], \[C\left( { - 1;1;2} \right)\]. Viết phương trình đường thẳng \[d\] đi qua điểm \[A\] và song song với \[BC.\]
Trong không gian \[Oxyz\], cho điểm \[A\left( {0;2; - 4} \right)\] và đường thẳng \[{d_1}:\]\[\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\] Gọi \[H\] là hình chiếu của \[A\] trên đường thẳng \[{d_1}\]. Đường thẳng \[AH\] có một vectơ chỉ phương là \[\overrightarrow u = \left( {a;b;c} \right)\] với \[a,b,c \in \mathbb{Z}.\] Khi đó \[2a - b + c\] bằng
Trong hệ tọa độ \[Oxyz\], đường thẳng nào dưới đây đi qua điểm \[A\left( {3; - 3;2} \right)\]?
II. Thông hiểu
Trong hệ tọa độ \[Oxyz\], phương trình tham số của đường thẳng đi qua điểm \[A\left( {2;0; - 1} \right)\] và vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] là
Cho điểm \[A\left( {1;0;1} \right)\] và mặt phẳng \[\left( P \right):2x - y + z - 1 = 0\]. Gọi \[d\] là đường thẳng đi qua \[A\] và vuông góc với \[\left( P \right)\]. Điểm nào sau đây không thuộc đường thẳng \[d\]?
Cho mặt phẳng \[\left( P \right):x - 2y + mz = 0\] và đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{1}\]. Tìm tham số \[m\] để \[d \bot \left( P \right)\].