Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

31/10/2024 13

Hàm số \(y = \frac{{1 - 2x}}{{ - x + 2}}\) có bao nhiêu cực trị?

A. \(3\).

B. \(0\).

Đáp án chính xác

C. \(2\).

D. \(1\).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có: \(y' = \frac{{ - 3}}{{{{\left( { - x + 2} \right)}^2}}} < 0\), \(\forall x \in D\).

Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2,\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty ,\,\,\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty \).

Hàm số  y = (1 − 2x) /( − x + 2)  có bao nhiêu cực trị? (ảnh 1)

Ta thấy hàm số đã cho không có cực trị.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số giá trị \[m\] nguyên để hàm số \(y = \frac{{mx + 2}}{{x + m}}\) nghịch biến trên từng khoảng xác định của nó là

Xem đáp án » 31/10/2024 15

Câu 2:

Cho hàm số y = f(x) = x3 + ax2 + bx + c có đồ thị như hình bên dưới.

Cho hàm số y = f(x) = x^3 + ax^2 + bx + c có đồ thị như hình bên dưới. (ảnh 1)

Chọn đáp án sai

Xem đáp án » 31/10/2024 15

Câu 3:

Cho đồ thị hàm số bậc ba \[f(x) = a{x^3} + b{x^2} + cx + d\] \[(a \ne 0,{\rm{ }}a,{\rm{ }}b,{\rm{ }}c,{\rm{ }}d \in \mathbb{R})\] có bảng biến thiên như hình vẽ bên dưới.

Cho đồ thị hàm số bậc ba  f ( x ) = ax^3 + bx^2 + cx + d   ( a ≠ 0 , a , b , c , d ∈ R )  có bảng biến thiên như hình vẽ bên dưới.  Hàm số đã cho đồng biến trên khoảng nào sau đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào sau đây?

Xem đáp án » 31/10/2024 14

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau

Cho hàm số  y = f ( x )  có bảng biến thiên như hình vẽ sau  Mệnh đề nào dưới đây đúng? (ảnh 1)

Mệnh đề nào dưới đây đúng?

Xem đáp án » 31/10/2024 14

Câu 5:

Chọn mệnh đề đúng về hàm số \(y = \frac{{2x - 1}}{{x + 2}}\) .

Xem đáp án » 31/10/2024 14

Câu 6:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau

Cho hàm số  y = f ( x )  liên tục trên  R  và có bảng biến thiên như sau  Giá trị cực đại của hàm số  y = f ( x )  bằng (ảnh 1)

Giá trị cực đại của hàm số \(y = f\left( x \right)\) bằng

Xem đáp án » 31/10/2024 13

Câu 7:

Hàm số nào sau đây nghịch biến trên toàn trục số?

Xem đáp án » 31/10/2024 13

Câu 8:

Điểm cực tiểu của hàm số \(y = - {x^3} + 3x + 4\) là:

Xem đáp án » 31/10/2024 13

Câu 9:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số  y = f ( x )  liên tục trên  R  và có bảng biến thiên như sau:  Trong các mệnh đề sau, có bao nhiêu mệnh đề sai?  I. Hàm số đã cho đồng biến trên các khoảng  ( − ∞ ; − 5 )  và  ( − (ảnh 1)

Trong các mệnh đề sau, có bao nhiêu mệnh đề sai?

I. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 5} \right)\) và \(\left( { - 3; - 2} \right)\).

II. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;5} \right)\).

III. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\).

IV. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).

Xem đáp án » 31/10/2024 13

Câu 10:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?

Cho hàm số  y = f ( x )  có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng? (ảnh 1)

Xem đáp án » 31/10/2024 13

Câu 11:

Cho hàm số \[y = {x^3} - 3{x^2} - 2\]. Gọi \[a,b\]lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số đó. Giá trị của \[2{a^2} + b\] là:

Xem đáp án » 31/10/2024 13

Câu 12:

Cho hàm số \[f(x)\] có bảng biến thiên:

Cho hàm số  f ( x )  có bảng biến thiên:  Hàm số đã cho đạt cực tiểu tại điểm nào sau đây ? (ảnh 1)

Hàm số đã cho đạt cực tiểu tại điểm nào sau đây ?

Xem đáp án » 31/10/2024 12

Câu 13:

II. Thông hiểu

Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?

Xem đáp án » 31/10/2024 12

Câu 14:

Cho hàm số \(y = {x^2}\left( {3 - x} \right)\). Mệnh đề nào sau đây là đúng?

Xem đáp án » 31/10/2024 12

Câu 15:

Cho hàm số \[y = - \frac{1}{3}{x^3} + 4{x^2} - 5x - 17\]. Gọi hoành độ 2 điểm cực trị của đồ thị hàm số là \[{x_1},{x_2}\]. Khi đó, tích số \[{x_1}{x_2}\]có giá trị là:

Xem đáp án » 31/10/2024 12

Câu hỏi mới nhất

Xem thêm »
Xem thêm »