IMG-LOGO

Câu hỏi:

03/11/2024 8

Chọn mệnh đề đúng về hàm số \(y = \frac{{2x - 1}}{{x + 2}}\) .

A. Hàm số nghịch biến trên từng khoảng xác định của nó.

B. Hàm số đồng biến trên tập xác định của nó.

C. Hàm số đồng biến trên từng khoảng xác định của nó.

Đáp án chính xác

D. Hàm số nghịch biến trên tập xác định của nó.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Ta có: \(y' = \frac{5}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \ne - 2\). Nên hàm số đồng biến trên từng khoảng xác định của nó.

Bảng biến thiên:

Chọn mệnh đề đúng về hàm số  y = (2x − 1) / (x + 2)  . (ảnh 1)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f(t) = 45t2 – t3, t = 0, 1, 2, …, 25. Nếu coi f(t) là hàm số xác định trên đoạn [0; 25] thì đạo hàm f'(t) được xem là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Xác định khoảng thời gian mà tốc độ truyền bệnh giảm?

Xem đáp án » 03/11/2024 22

Câu 2:

II. Thông hiểu

Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?

 

Xem đáp án » 03/11/2024 10

Câu 3:

Hàm số\[y = - {x^3} + 3{x^2} + 1\] nghịch biến khi \[x\] thuộc khoảng nào sau đây?

Xem đáp án » 03/11/2024 10

Câu 4:

III. Vận dụng

Cho hàm số \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ:

Cho hàm số  y = f ( x ) . Hàm số  y = f ′ ( x )  có đồ thị như hình vẽ:  Khẳng định nào sau đây là khẳng định đúng? (ảnh 1)

Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 03/11/2024 10

Câu 5:

I. Nhận biết

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào?

Cho hàm số  y = f ( x )  có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào? (ảnh 1)

Xem đáp án » 03/11/2024 9

Câu 6:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. Hàm số đạt cực đại tại điểm nào dưới đây?

Cho hàm số  y = f ( x )  xác định, liên tục trên  R  và có đồ thị là đường cong như hình vẽ. Hàm số đạt cực đại tại điểm nào dưới đây? (ảnh 1)

Xem đáp án » 03/11/2024 9

Câu 7:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau

Cho hàm số  y = f ( x )  liên tục trên  R  và có bảng biến thiên như sau  Giá trị cực đại của hàm số  y = f ( x )  bằng (ảnh 1)

Giá trị cực đại của hàm số \(y = f\left( x \right)\) bằng

Xem đáp án » 03/11/2024 9

Câu 8:

Hàm số \(y = \frac{{1 - 2x}}{{ - x + 2}}\) có bao nhiêu cực trị?

Xem đáp án » 03/11/2024 9

Câu 9:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?

Cho hàm số  y = f ( x )  có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng? (ảnh 1)
 

Xem đáp án » 03/11/2024 9

Câu 10:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Cho hàm số  y = f ( x )  có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Xem đáp án » 03/11/2024 8

Câu 11:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 4x - 1\) có bao nhiêu điểm cực trị ?

Xem đáp án » 03/11/2024 8

Câu 12:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau

Cho hàm số  y = f ( x )  có bảng biến thiên như hình vẽ sau  Mệnh đề nào dưới đây đúng? (ảnh 1)

Mệnh đề nào dưới đây đúng?

Xem đáp án » 03/11/2024 7

Câu 13:

Cho hàm số \[y = {x^3} - 3{x^2} - 2\]. Gọi \[a,b\]lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số đó. Giá trị của \[2{a^2} + b\] là:

Xem đáp án » 03/11/2024 7

Câu 14:

Một chuyển động thẳng xác định bởi phương trình \(s = \frac{1}{3}{t^3} - 3{t^2} + 5t + 2\) với \(t \ge 0\), trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào vận tốc của vật tăng?

Xem đáp án » 03/11/2024 7

Câu 15:

Cho hàm số \(y = {x^2}\left( {3 - x} \right)\). Mệnh đề nào sau đây là đúng?

Xem đáp án » 03/11/2024 6

Câu hỏi mới nhất

Xem thêm »
Xem thêm »