Hàm số\[y = - {x^3} + 3{x^2} + 1\] nghịch biến khi \[x\] thuộc khoảng nào sau đây?
A. \[(0;2).\]
B. \[(0; + \infty ).\]
C. \[( - \infty ;2).\]
D. \[( - \infty ;0)\] và \[(2; + \infty ).\]
Đáp án đúng là: D
Ta có:\[y' = - 3{x^2} + 6x < 0 \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\].
II. Thông hiểu
Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?
III. Vận dụng
Cho hàm số \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ:
Khẳng định nào sau đây là khẳng định đúng?
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 4x - 1\) có bao nhiêu điểm cực trị ?
I. Nhận biết
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ. Hàm số đạt cực đại tại điểm nào dưới đây?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
Giá trị cực đại của hàm số \(y = f\left( x \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?
Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f(t) = 45t2 – t3, t = 0, 1, 2, …, 25. Nếu coi f(t) là hàm số xác định trên đoạn [0; 25] thì đạo hàm f'(t) được xem là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Xác định khoảng thời gian mà tốc độ truyền bệnh giảm?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau
Mệnh đề nào dưới đây đúng?
Cho hàm số \[y = {x^3} - 3{x^2} - 2\]. Gọi \[a,b\]lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số đó. Giá trị của \[2{a^2} + b\] là:
Cho hàm số \(y = {x^2}\left( {3 - x} \right)\). Mệnh đề nào sau đây là đúng?