III. Vận dụng
Áp suất \[P\,\,\left( {{\rm{lb/}}\,{\rm{i}}{{\rm{n}}^{\rm{2}}}} \right)\] cần thiết để ép nước qua một ống dài \[L\,\,\left( {{\rm{ft}}} \right)\] và đường kính \[d\] (in) với tốc độ \[v\] (ft/s) được cho bởi công thức: \(P = 0,00161 \cdot \frac{{{v^2}L}}{d}\) (Nguồn: Engineering Problems Illustrating Mathematics, John W. Cell, năm 1943). Biểu thức biểu diễn của \[v\] theo \[P,\,\,L\] và \[d\] là
A. \(v = \sqrt {\frac{{Pd}}{{0,00161L}}} \).
B. \(v = P\sqrt {\frac{d}{{0,00161L}}} \).
C. \(v = d\sqrt {\frac{P}{{0,00161L}}} \).
D. \(v = L\sqrt {\frac{{Pd}}{{0,00161}}} \).
Đáp án đúng là: A
Từ công thức \(P = 0,00161.\frac{{{v^2}L}}{d}\), ta có: \({v^2}L = \frac{{Pd}}{{0,00161}}\)
Khi đó \({v^2} = \frac{{Pd}}{{0,00161L}}\) nên \(v = \sqrt {\frac{{Pd}}{{0,00161L}}} \) (do \(v > 0).\)
Vậy biểu thức biểu diễn của \[v\] theo \[P,\,\,L\] và \[d\] là \(v = \sqrt {\frac{{Pd}}{{0,00161L}}} \).
Khử mẫu biểu thức \( - xy\sqrt {\frac{1}{{xy}}} \) với \(x\) và \(y\) cùng dấu, ta được kết quả là
Giả sử các căn thức đều có nghĩa. Nếu \(\sqrt {x + 10} - \sqrt {x - 10} = 4\) thì \(\sqrt {x + 10} + \sqrt {x - 10} \) bằng
Với \(x \ge 0,\) biểu thức \(\frac{1}{{2 - \sqrt x }}\) viết dưới dạng \(\frac{{a\sqrt x + b}}{{x - 4}}\) với \(a,\,b\) là các số nguyên. Giá trị biểu thức \(a - 2b\) bằng
Rút gọn biểu thức \(\sqrt {{a^2}{{\left( {5 - a} \right)}^2}} \) với \(a > 5\) ta được kết quả là
Với \(xy \ne 0\) thì biểu thức \(0,3{x^3}{y^2}\sqrt {\frac{9}{{{x^4}{y^8}}}} \) bằng
II. Thông hiểu
Rút gọn biểu thức \(\sqrt {\frac{{4{a^2}}}{3}} - 3\sqrt {\frac{{{a^2}}}{{27}}} \) với \(a > 0,\) ta được kết quả là
Trong thuyết tương đối, khối lượng \[m\] (kg) của một vật khi chuyển động với vận tốc \[v\] (m/s) được cho bởi công thức \(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\), trong đó \({m_0}\) là khối lượng của vật khi đứng yên; \[c\] (m/s) là vận tốc của ánh sáng trong chân không. Khối lượng \[m\] của vật còn có thể được tính bằng công thức nào dưới đây?
Giá trị biểu thức \(\sqrt {\frac{{5{a^6}}}{{4{b^2}}}} \) với \(b \ne 0\) bằng
Rút gọn biểu thức \(\frac{{x - 4\sqrt x + 4}}{{x - 2\sqrt x }}\) với \(x > 0,\,\,x \ne 4\) ta được kết quả là
Cho hai biểu thức \(A\) và \(B > 0.\) Khẳng định nào sau đây là sai?
I. Nhận biết
Cho biểu thức \(A < 0.\) Khẳng định nào sau đây là đúng?