Cho đường tròn \[\left( O \right)\] và hai điểm \[A,B\] nằm trên đường tròn \[\left( O \right).\] Nếu hai tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A,B\] cắt nhau tại \[M\] thì
A. \[MO\] là tia phân giác của \[\widehat {OAM}.\]
B. \[MO\] là tia phân giác của \[\widehat {BOM}.\]
C. \[MO\] là tia phân giác của \[\widehat {AOM}.\]
D. \[MO\] là tia phân giác của \[\widehat {AMB.}\]
Đáp án đúng là: D
Cho đường tròn \[\left( O \right)\] và hai điểm \[A,B\] nằm trên đường tròn \[\left( O \right).\] Nếu hai tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A,B\] cắt nhau tại \[M\] thì \[MO\] là tia phân giác của \[\widehat {AMB.}\]
Vậy ta chọn phương án D.
Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Vẽ đường kính \[CD\] đường tròn \[\left( O \right).\] Khẳng định nào sau đây là đúng?
Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?
I. Nhận biết
Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Kết luận nào sau đây là đúng?
Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì
Cho đường tròn \[\left( O \right)\] và hai điểm \[M,N\] thuộc đường tròn \[\left( O \right).\] Nếu hai tiếp tuyến của đường tròn \[\left( O \right)\] tại \[M,N\] cắt nhau tại \[A\] thì
Cho đường tròn \[\left( I \right)\] và hai điểm \[P,Q\] thuộc đường tròn \[\left( I \right).\] Nếu hai tiếp tuyến của đường tròn \[\left( I \right)\] tại \[P,Q\] cắt nhau tại \[E\] thì
II. Thông hiểu
Cho hình vẽ dưới đây biết \(AB,\,\,CB\) là hai tiếp tuyến của đường tròn \(\left( D \right).\)
Giá trị của \[x\] bằng
Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?
Cho điểm \[M\] nằm ngoài đường tròn \[\left( I \right)\] và \[ME,MF\] là hai tiếp tuyến của đường tròn này tại \[E,F.\] Cho biết \[\widehat {EMF} = 60^\circ .\] Tam giác \[EMF\] là tam giác gì?
Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng
Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:
(i) \[OH \cdot ON = {R^2}.\]
(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]
Kết luận nào sau đây là đúng nhất?
III. Vận dụng
Cho nửa đường tròn \[\left( {O;R} \right)\] đường kính \[AB.\] Vẽ các tia tiếp tuyến \[Ax,By\] với nửa đường tròn. Lấy điểm \[M\] di động trên tia \[Ax,\] điểm \[N\] di động trên tia \[By\] sao cho \[AM \cdot BN = {R^2}.\] Cho các nhận định sau:
(i) \[MN\] là tiếp tuyến của đường tròn \[\left( O \right).\]
(ii) \[\widehat {MON} = 90^\circ .\]
Kết luận nào sau đây là đúng nhất?
Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng
Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng