Cho hình trụ nằm bên trong hình lập phương có cạnh bằng \[x\] (hình vẽ).
Tỉ số thể tích của hình trụ và hình lập phương đã cho là
A. \[\frac{\pi }{2}.\]
B. \[\frac{\pi }{4}.\]
C. \[\frac{\pi }{{12}}.\]
D. \[\frac{{2\pi }}{3}.\]
Đáp án đúng là: B
Quan sát hình vẽ, ta thấy:
⦁ Chiều cao của hình trụ bằng cạnh của hình lập phương. Tức là, \[h = x.\]
⦁ Đường kính đáy của hình trụ bằng cạnh của hình lập phương. Tức là, \[2r = x.\] Suy ra \[r = \frac{x}{2}.\]
Thể tích của hình trụ là: \[V = \pi {r^2}h = \pi \cdot {\left( {\frac{x}{2}} \right)^2} \cdot x = \frac{{\pi {x^3}}}{4}.\]
Thể tích của hình lập phương là: \[V' = {x^3}.\]
Do đó tỉ số thể tích của hình trụ và hình lập phương đã cho là: \[\frac{V}{{V'}} = \frac{{\frac{{\pi {x^3}}}{4}}}{{{x^3}}} = \frac{\pi }{4}.\]
Vậy ta chọn phương án B.
I. Nhận biết
Hình chữ nhật có chiều dài \[8{\rm{\;cm}},\] chiều rộng \[6{\rm{\;cm}}.\] Quay hình chữ nhật đó một vòng quanh chiều dài của nó ta được một hình trụ có chiều cao \[h\] và bán kính đáy \[r.\]
Kết luận nào sau đây là đúng?
Gọi \[l,h,r\] lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ \[\left( T \right).\] Diện tích toàn phần \[{S_{tp}}\] của hình trụ \[\left( T \right)\] có công thức là
II. Thông hiểu
Một hình trụ có đường kính đáy \[2{\rm{\;dm}},\] đường sinh \[14{\rm{\;dm}}.\] Thể tích của hình trụ đó bằng
Cho hình chữ nhật có chiều dài \[3{\rm{\;cm}},\] chiều rộng \[2{\rm{\;cm}}.\] Quay hình chữ nhật đó một vòng quanh chiều dài của nó ta được một hình trụ có diện tích xung quanh bằng
Cho hình chữ nhật có chiều dài \[10{\rm{\;cm}},\] chiều rộng \[7{\rm{\;cm}}.\] Quay hình chữ nhật đó một vòng quanh chiều dài của nó ta được một hình trụ có thể tích bằng
Nếu tăng bán kính đáy của hình trụ lên 4 lần và giữ nguyên chiều cao thì thể tích mới của hình trụ
Một ống nước có dạng hình trụ (như hình vẽ).
Kết luận nào sau đây là đúng?
Gọi \[h,\,\,r\] lần lượt là chiều cao và bán kính đáy của hình trụ \[\left( T \right).\] Thể tích \[V\] của hình trụ \[\left( T \right)\] có công thức là
Gọi \[l,h,r\] lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ \[\left( T \right).\] Diện tích xung quanh \[{S_{xq}}\] của hình trụ \[\left( T \right)\] có công thức là
Cho hình chữ nhật \[MNPQ\] có \[MN = 16{\rm{\;cm}},NP = 12{\rm{\;cm}}.\] Khi quay hình chữ nhật đã cho một vòng quanh cạnh \[MN\] ta được một hình trụ có diện tích toàn phần (lấy \[\pi \approx 3,14)\] khoảng
Cho hình trụ có bán kính đáy \[r = 8{\rm{\;cm}}\] và diện tích toàn phần \[564\pi {\rm{\;c}}{{\rm{m}}^2}.\] Chiều cao của hình trụ bằng
Cho hình trụ có chiều cao \[h = 12{\rm{\;cm}}\] và diện tích xung quanh \[{S_{xq}} = 64\pi {\rm{\;c}}{{\rm{m}}^2}.\] Bán kính đáy của hình trụ là
III. Vận dụng
Một hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao \[h = 12{\rm{\;cm}}\] và đường kính đáy \[d = 8{\rm{\;cm}}.\] Diện tích toàn phần của hộp sữa là
Một hình trụ \[\left( T \right)\] được tạo ra khi quay hình chữ nhật \[ABCD\] một vòng quanh cạnh \[AB.\] Biết \[AC = 2a\sqrt 2 \] và \[\widehat {ACB} = 45^\circ .\] Thể tích \[V\] của hình trụ \[\left( T \right)\] là