Có bao nhiêu số nguyên m để phương trình có đúng 3 nghiệm phân biệt?
A. Vô số
B. 3
C. 1
D. 2
Giả sử hàm f có đạo hàm cấp 2 trên R thỏa mãn và . Tính tích phân
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, , SAB là tam giác đều, . Tính thể tích của khối chóp S.ABCD
Cho số thực m và hàm số y = f(x) có đồ thị như hình vẽ bên. Phương trình có nhiều nhất bao nhiêu nghiệm phân biệt thuộc đoạn [-1;2]?
Cho hàm số y = f(x) liên tục, nhận giá trị dương trên R và có bảng xét dấu đạo hàm như hình bên. Hàm số đồng biến trên khoảng
Trong không gian Oxyz, cho tam giác ABC vuông tại A, , đường thẳng BC có phương trình , đường thẳng AB nằm trong mặt phẳng . Biết đỉnh C có cao độ âm. Tính hoành độ của đỉnh A.
Một biển quảng cáo có dạng hình Elip với bốn đỉnh , như hình vẽ bên. Người ta chia Elip bởi Parabol có đỉnh B1, trục đối xứng B1B2, và đi qua các điểm M ,N. Sau đó sơn phần tô đậm với giá 200.000 đồng/m2 và trang trí đèn Led phần còn lại với giá 500.000 đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A1A2 = 4m, B1B2 = 2m, MN = 2m
Tính thể tích V của vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 4, biết rằng khi cắt bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x(0 < x < 4) thì được thiết diện là nửa hình tròn có bán kính
Cho hàm số y = f(x) có tập xác định và bảng biến thiên như hình vẽ
Mệnh đề nào sau đây sai về hàm số đã cho ?
Cho hình nón đỉnh S có đường sinh bằng 2, đường cao bằng 1. Tìm đường kính của mặt cầu chứa điểm S và chứa đường tròn đáy hình nón đã cho.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để bất phương trình nghiệm đúng với mọi ?
Giả sử f(x) và g(x) là các hàm số bất kỳ liên tục trên và a, b, c là các số thực.
Mệnh đề nào sau đây sai?