Tìm m để bất phương trình luôn đúng.
A. m = 0
B. m < 0
C. m ≤ 0
D. Không có đáp án
Xét hàm số có a = 1 > 0; b = 2 > 0 => a, b cùng dấu.
Đồ thị có dạng như hình bên.
Do đó, để bất phương trình ≥ m luôn đúng thì m ≤ min()
Từ đồ thị hàm số ta suy ra m ≤ 0 . Chọn đáp án C.
Cho hàm số (C). Tìm phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng
Tiếp tuyến của parabol tại điểm (1; 3) tạo với hai trục tọa độ một tam giác vuông. Diện tích tam giác vuông đó là
Gọi M, N là giao điểm của y = x+1 và Khi đó hoành độ trung điểm của I của đoạn thẳng MN bằng
Cho hàm số
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y'' = 0 là
Đường cong trong hình dưới đây là đồ thị của một hàm số trong 4 hàm số được liệt kê ở 4 phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hàm số . Có nhiều nhất mấy tiếp tuyến với đồ thị hàm số đi qua điểm M(1; 3) ?
Cho hàm số . Hình nào dưới đây mô tả chính xác nhất đồ thị hàm số trên?
Với mọi m ∈ (-1; 1) phương trình có mấy nghiệm trên đoạn [0; π] ?