Đồ thị hàm số cắt
A. Đường thẳng y = 3 tại hai điểm.
B. Đường thẳng y = -4 tại hai điểm.
C. Đường thẳng y = 5/3 tại ba điểm.
D. Trục hoành tại một điểm.
Ta xét từng phương án :
* Xét phương trình hoành độ giao điểm của và đường thẳng y = 3 :
Phương trình trên có 1 nghiệm duy nhất nên đồ thị cắt đường thẳng tại đúng 1 điểm.
* Xét phương trình hoành độ giao điểm của và đường thẳng y = -4 :
Phương trình trên có 1 nghiệm duy nhất nên đồ thị cắt đường thẳng tại đúng 1 điểm.
* Xét phương trình hoành độ giao điểm của và đường thẳng y = 5/3
Ta có:
Phương trình trên có 3 nghiệm nên đồ thị cắt đường thẳng tại 3 điểm.
* Xét phương trình hoành độ giao điểm của và trục hoành y = 0:
Ta có:
Phương trình trên có 3 nghiệm nên đồ thị cắt trục hoành tại 3 điểm phân biệt.
Chọn C
Cho hàm số (C). Tìm phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng
Tiếp tuyến của parabol tại điểm (1; 3) tạo với hai trục tọa độ một tam giác vuông. Diện tích tam giác vuông đó là
Gọi M, N là giao điểm của y = x+1 và Khi đó hoành độ trung điểm của I của đoạn thẳng MN bằng
Cho hàm số
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y'' = 0 là
Đường cong trong hình dưới đây là đồ thị của một hàm số trong 4 hàm số được liệt kê ở 4 phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hàm số . Có nhiều nhất mấy tiếp tuyến với đồ thị hàm số đi qua điểm M(1; 3) ?
Cho hàm số . Hình nào dưới đây mô tả chính xác nhất đồ thị hàm số trên?
Với mọi m ∈ (-1; 1) phương trình có mấy nghiệm trên đoạn [0; π] ?