Cho hệ phương trình . Hệ phương trình có nghiệm duy nhất khi:
A. a < 1
B. a < −2
C. Mọi a
D. a > −1
Ta xét 2 trường hợp:
+ Nếu a = 0, hệ có dạng:. Vậy hệ có nghiệm duy nhất.
+ Nếu , hệ có nghiệm duy nhất khi và chỉ khi:
Do đó, với , hệ luôn có nghiệm duy nhất.
Tóm lại hệ phương trình đã cho có nghiệm duy nhất với mọi a.
Đáp án: C
Cho hệ phương trình (a là tham số). Với , hệ có nghiệm duy nhất (x; y). Tính x + y theo a.
Cho hệ phương trình có nghiệm (x; y). Tìm m để biểu thức A = xy + x – 1 đạt giá trị lớn nhất.
Cho hệ phương trình (m là tham số). Tìm m để hệ có nghiệm duy nhất (x; y) thỏa mãn x + y = −3
Cho hệ phương trình . Có bao nhiêu giá trị của m để hệ phương trình có nghiệm thỏa mãn
Cho hệ phương trình . Tìm m để có nghiệm duy nhất (x; y) sao cho biểu thức đạt giá trị nhỏ nhất.
Cho hệ phương trình (a là tham số). Với , hệ có nghiệm duy nhất (x; y). Tìm các số nguyên a để hệ phương trình có nghiệm nguyên.
Cho hệ phương trình . Có bao nhiêu giá trị của m mà để hệ phương trình có nghiệm thỏa mãn:
Cho hệ phương trình (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn
Cho hệ phương trình (m là tham số). Kết luận nào sau đây là đúng khi nói về nghiệm (x; y) của hệ phương trình?
Cho hệ phương trình(m là tham số). Tìm m để hệ có nghiệm duy nhất (x; y) thỏa mãn x − y = 1
Cho hệ phương trình (m là tham số). Nghiệm của hệ phương trình khi m = 2 là?
Cho hệ phương trình . Trong mọi trường hợp hệ có nghiệm duy nhất, tính x – y theo m