Cho hàm số có đồ thị (C) Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến của của (C)tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào
A. (27;28)
B. (28;29)
C. (26;27)
D. (29;30)
Đáp án A
Vì I là tâm đối xứng của đồ thị
Gọi suy ra phương trình tiếp tuyến là
Đường thẳng cắt TCĐ tại
Đường thẳng cắt TCN tại
Suy ra
Tam giác IAB vuông tại
Dấu bằng xảy ra khi và chỉ khi
Suy ra phương trình đường thẳng và gọi M, N lần lượt là giao điểm của với Ox, Oy
Khi đó
Vậy
Trong mặt phẳng Oxy, xét hình gồm 2 đường thẳng d và d’ vuông góc nhau. Hỏi hình đó có mấy trục đối xứng
Trong mặt phẳng Oxy, phép tịnh tiến theo vectơ biến điểm A(2;1) thành điểm nào trong các điểm sau:
Cho hàm số có bảng biến thiên như hình vẽ dưới đây
Tính giá trị của biểu thức
Một khối lập phương có diện tích một mặt bằng 4. Nếu tăng cạnh của khối lập phương lên gấp đôi thì thể tích khối lập phương đó bằng:
Cho đồ thị của ba hàm số được mô tả bằng hình vẽ. Hỏi đồ thị của các hàm số theo thứ tự, lần lượt tương ứng với đường cong nào?
Cho hàm số y= f(x) xác định, liên tục trên R và có bảng biến thiên
Khẳng định nào sau đây là sai?
Cho hình hộp đứng 'ABCD.A’B’C’D’ có đáy là hình vuông, tam giác A’AC vuông cân, Khoảng cách từ điểm A đến mặt phẳng tính theo a là
Cho hàm số Giá trị của tham số m để đưởng thẳng cắt tại ba điểm phân biệt sao cho tam giác KBC có diện tích bằng với điểm K(1;3) là
Cho các mệnh đề sau
I. Đồ thị hàm số nhận giao điểm hai đường tiệm cận làm tâm đối xứng
II. Số điểm cực trị tối đa của hàm số trùng phương là ba
III. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
IV. Số giao điểm của hai đồ thị hàm số và là số nghiệm phân biệt của phương trình:
Trong các mệnh đề trên mệnh đề đúng là
Xét phép thử gieo một con xúc xắc cân đối, đồng chất hai lần. Số phần tử của không gian mẫu là
Tổng các góc của tất cả các mặt của khối đa diện đều loại {3;4} là