Cho tam giác ABC cân tại A nội tiếp đường tròn tâm (O). Tìm khẳng định đúng?
A. Hai dây AB và AC cách đều tâm.
B. Dây BC gần tâm nhất.
C. Dây BC gần tâm hơn dây AC.
D. Dây AB gần tâm hơn dây BC.
Đáp án A
Vì tam giác ABC cân tại A nên AB = AC
Suy ra: hai dây AB và AC cách đều tâm.
Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.
Cho đường tròn (O;5cm). Dây AB và CD song song, có độ dài lần lượt là 8cm và 6cm. Biết OM, ON theo thứ tự là khoảng cách từ tâm đến dây AB và CD. Tính tổng OM và ON?
Cho đường tròn (O) đường kính AB. Kẻ hai dây AC và BD song song. Chọn khẳng định đúng trong các khẳng định sau.
Cho đường tròn (O) đường kính AB = 13 cm, dây CD có độ dài 12 cm vuông góc với AB tại H ( H nằm giữa O và A). Tính HB.
Cho đường tròn tâm O bán kính 3 cm và hai dây AB và AC. Biết AB = 5cm, AC = 2cm. Trong 2 dây AB và AC dây nào gần tâm hơn?
Cho đường tròn tâm O, bán kính R = 6cm ngoại tiếp tam giác ABC vuông tại A có AB = 6cm, AC = 8 cm. Trong các dây AB, BC và AC thì dây nào gần tâm hơn?
Cho đường tròn tâm O, bán kính R = 10cm. Tam giác ABC nội tiếp đường tròn tâm O, biết góc A là góc tù. Hỏi trong các dây AB, BC và AC thì dây nào gần tâm nhất?
Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?
Cho đường tròn (O; R = 20). Cho dây cung MN có độ dài 36. Khoảng cách từ tâm O đến dây cung là?
Cho đường tròn (O; R), có dây cung MN có độ dài là 24cm, khoảng cách từ O đến đường thẳng MN là 16cm. Độ dài bán kính R là?