Cho nửa đường tròn tâm O, đường kính AB. Dựng các tiếp tuyến Ax và By với đường tròn. Lấy điểm I bất kì trên nửa đường tròn, tiếp tuyến tại I cắt Ax, By lần lượt tại C và D. Khẳng định nào sau đây là sai?
A. AC + BD = CD
B. AC . BD =
C. = DB. (AC + DB)
D. Có 2 khẳng định sai
Đáp án D
* Do AC và CI là 2 tiếp tuyến cắt nhau tại C nên: CA = CI ( tính chất 2 tiếp tuyến cắt nhau)
* Do BD và DI là 2 tiếp tuyến cắt nhau tại D nên: DB = DI ( tính chất 2 tiếp tuyến cắt nhau).
Suy ra: AC + BD = CI + DI = CD. - A đúng
+) AC.BD = CI.DI (1)
Xét tam giác COD vuông tại O có đường cao OI nên:
CI.ID = = (2)
Từ (1) và (2) suy ra: AC.BD = - B đúng
Và = DI.DC = DB . (AC + BD) - C đúng
Vậy không có khẳng định nào là sai.
Cho đường tròn (O; 6cm) . Gọi A là điểm nằm ngoài đường tròn sao cho OA = 10cm.
Qua A dựng hai tiếp tuyến AM và AN đến (O), với M và N là tiếp điểm. Gọi giao điểm của AO và MN là H. Tìm khẳng định đúng?
Hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A. Vẽ đường kính CD của (O). Khi đó:
Cho đường tròn (O), từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm). Lấy điểm M trên cung nhỏ BC, qua điểm M dựng tiếp tuyến với đường tròn (O) cắt các tiếp tuyến AB và AC theo thứ tự D và E. Khi đó, chu vi tam giác ADE bằng?
Cho đường tròn (O); điểm M nằm ngoài đường tròn (O). Từ M dựng hai tiếp tuyến MA và MB. Tia MO cắt đường tròn tại N ( N nằm trên cung lớn AB). Khi đó, tam giác NAB là:
Cho đường tròn (O). Qua điểm M nằm ngoài đường tròn kẻ 2 tiếp tuyến MA và MB đến đường tròn (A, B là 2 tiếp điểm). Đường thẳng OM cắt AB tại H. Biết rằng OM = 10 cm; R = 5 cm. Tìm khẳng định đúng?
Cho đường tròn (O; 6cm) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến MA và MB đến đường tròn (A và B là tiếp điểm), biết MO = 12cm . Tính
Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Chọn khẳng định sai?