Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
A. 468
B. 280
C. 310
D. 290
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0;2;4;6. Gọi là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu số cách lập là:
*TH2: Nếu thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là:
Số cách lập:
Hình bên là đồ thị của ba hàm số được vẽ trên cùng một hệ trục trục tọa độ. Khẳng định nào sau đây là khẳng định đúng?
Cho hình chóp S.ABCD có đáy là hình chữ nhật, Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
Cho hàm số Tìm m để tiếp tuyến của tại điểm có hoành độ tạo với hai trục tọa độ một tam giác có diện tích bằng 25/2.
Ba đỉnh của một hình bình hành có tọa độ là Diện tích của hình bình hành đó bằng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC . Khẳng định nào sau đây SAI?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng Tính góc giữa hai đường thẳng SB và AC.
Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng.
Cho đồ thị Tất cả giá trị của tham số m để cắt trục hoành tại ba điểm phân biệt có hoành độ thỏa là