Các thành phố A,B,C,D được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?
A. 10
B. 9
C. 24
D. 18
Đáp án C
Số cách đi từ A đến B là 4, số cách đi từ B đến C là 2, số cách đi từ C đến D là 3.
Số cách đi từ A đến D mà qua B và C chỉ một lần là: 4.2.3 = 24 (cách)
Cho bốn điểm A,B,C,D không cùng nằm trong một mặt phẳng. Trên AB,AD lần lượt lấy các điểm M và N sao cho MN cắt BD tại I. Điểm I không thuộc mặt phẳng nào sau đây:
Cho hình chóp S.ABC có M,N lần lượt là trung điểm của SA,SB. Giao tuyến của hai mặt phẳng (CMN) và (SBC) là:
Cho hình chóp S.ABC có đáy ABC vuông tại B, SA vuông góc với đáy ABC. Khẳng định nào dưới đây sai?
Cho hình lập phương ABCD.A'B'C'D' có cạnh a. Gọi M là trung điểm A'B' là trung điểm. Tính thể tích của khối tứ diện ADMN
Trong mặt phẳng Oxy, cho điểm A(2;-1). Ảnh của điểm A qua phép vị tự tâm O tỉ số k = 2 có tọa độ là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp S.ABCD cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB,CD để thiết diện đó là hình bình hành?
Cho tam giác ABC có AB = 3,BC = 5,CA = 7. Tính thể tích của khối tròn xoay sinh ra là do hình tam giác ABC quay quanh đường thẳng AB:
Một hộp chứa 3 quả cầu trắng và 2 quả cầu đen. Lấy ngẫu nhiên đồng thời hai quả. Xác suất để lấy được cả hai quả trắng là:
Gọi a, b, c là ba số thực khác 0 thay đổi và thỏa mãn điều kiện . Tìm giá trị nhỏ nhất của biểu thức
Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = a. Mặt cầu đi qua các đỉnh có bán kính r bằng:
Cho khối tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a. Góc giữa hai mặt phẳng (ABC) và (BCD) bằng . Tính thể tích V của khối tứ diện ABCD theo a:
Cho tứ diện ABCD. Gọi I, J lần lượt là trọng tâm các tam giác ABC và ABD. Trong các mệnh đề sau, mệnh đề nào đúng?
Hệ thức liên hệ giữa giá trị cực đại và giá trị cực tiểu của đồ thị hàm số là: