Một tấm sắt hình chữ nhật có chu vi 96cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 4cm. Diện tích còn lại của tấm sắt là . Tính các kích thước của tấm sắt biết chiều dài của tấm sắt có độ dài lớn hơn 20cm
A. 32cm và 16cm
B. 30cm và 18cm
C. 28cm và 20cm
D. 26cm và 22cm
Đáp án A
Nửa chu vi tấm sắt là 96 : 2 = 48 (cm)
Gọi chiều dài của tấm sắt là x (cm) (x > 20)
Chiều rộng của tấm sắt sẽ là 48 – x (cm)
Diện tích của tấm sắt ban đầu là x (48 – x) ()
Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 4cm nên diện tích phần cắt đi là: 4.4.4 = 64 ()
Diện tích còn lại của tấm sắt là 448 nên ta có phương trình:
Vậy chiều dài và chiều rộng của tấm sắt lần lượt là 32cm và 16cm
Cho parabol (P): y = và đường thẳng (d): y = mx + 1. Gọi A () và B () là các giao điểm của (d) và (P). Tìm m để biểu thức M = ( − 1)( − 1) đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2x – y – = 0 và parabol (P): y = a (a > 0). Tìm a để (d) cắt (P) tại hai điểm phân biệt A, B. Khi đó có kết luận gì về vị trí của hai điểm A, B
Một người dự định đi xe đạp từ A đến B cách nhau 36km trong thời gian đã định. Sau khi đi được nửa quãng đường, người đó dừng lại nghỉ 30 phút. Vì vậy mặc dù trên quãng đường còn lại đã tăng tốc thêm 2km/h song vẫn đến B chậm hơn dự kiến 12 phút. Vậy vận tốc của người đi xe đạp trên đoạn đường cuối của đoạn AB?
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = . Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?
Một ô tô đi từ tỉnh A đến tỉnh B cách nhau 120km. Cùng lúc đó có một xe máy chạy từ B trở về A và gặp xe ô tô C cách một trong hai điểm khởi hành 75km. Tính vận tốc của mỗi xe, biết rằng nếu vận tốc của hai xe không đổi và xe máy khởi hành trước ô tô 48 phút thì sẽ gặp nhau ở giữa quãng đường.
Một phân xưởng đặt kế hoạch sản xuất 200 sản phẩm. Trong 5 ngày đầu do còn làm việc khác nên mỗi ngày phân xưởng sản xuất ít hơn mức đề ra là 4 sản phẩm. Trong những ngày còn lại, xưởng sản xuất vượt mức 10 sản phẩm mỗi ngày nên hoàn thành kế hoạch sớm hơn 1 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng cần sản xuất bao nhiêu sản phẩm?
Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = tại hai điểm phân biệt M và N sao cho MN = 2
Phân tích đa thức f(x) = – 2m – x + – m thành tích của hai tam thức bậc hai ẩn x.
Một công nhân được giao làm một số sản phẩm trong thời gian nhất định. Khi còn làm nốt 30 sản phẩm cuối cùng người đó thấy nếu cứ giữ nguyên năng suất thì sẽ chậm 30 phút. Nếu tăng năng suất thêm 55 sản phẩm một giờ thì sẽ xong sớm hơn dự định là 30 phút. Tính năng suất của người thợ lúc đầu.
Cho phương trình 2 + 2mx + – 2 = 0, với m là tham số. Gọi là hai nghiệm của phương trình. Tìm hệ thức liên hệ giữa không phụ thuộc vào m.
Cho phương trình – (2m + 1)x + + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt sao cho biểu thức có giá trị là số nguyên
Chiều cao của một tam giác vuông là 8cm chia cạnh huyền thành 2 đoạn thẳng hơn kém nhau 12cm. Tính độ dài cạnh huyền của tam giác vuông đó.
Tìm m để phương trình 3 + 4(m – 1)x + – 4m + 1 = 0 có hai nghiệm phân biệt thỏa mãn:
Cho phương trình – (m – 1)x – + m – 2 = 0, với m là tham số. Gọi hai nghiệm của phương trình đã cho là . Tìm m để biểu thức đạt giá trị lớn nhất
Cho phương trình – 2(m + 1)x + + 2, với m là tham số. Khi phương trình có hai nghiệm thì biểu thức P = – 2() – 6 có giá trị nhỏ nhất là: