Cho tam giác nhọn ABC (AB < AC) nội tiếp (O; R). Gọi BD, CE là hai đường cao của tam giác. Gọi d là tiếp tuyến tại A của (O; R) và M, N lần lượt là hình chiếu của B, C trên d. Tam giác AMB đồng dạng với tam giác:
A. BCD
B. CBD
C. CDB
D. BDC
Xét (O) có (hệ quả) => AMB đồng dạng với CDB (g – g)
Đáp án cần chọn là: C
Tìm số đo góc trong hình vẽ biết = 100o và Ax là tiếp tuyến của đường tròn (O) tại A
Từ điểm M nằm ngoài (O) kẻ các tiếp tuyến MD; MB và cát tuyến MAC với đường tròn (A nằm giữa M và C). Khi đó MA. MC bằng:
Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy điểm M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). Gọi I là trung điểm MA,
Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy điểm M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). Gọi I là trung điểm MA, K là giao điểm của BI với (O). Tam giác IKA đồng dạng với tam giác:
Cho tam giác ABC nội tiếp đường tròn (O), tiếp tuyến tại A của (O) cắt BC tại P. Hai tam giác nào sau đây đồng dạng?
Từ điểm M nằm ngoài (O) kẻ các tiếp tuyến MD; MB và cát tuyến MAC với đường tròn (A nằm giữa M và C). Chọn câu đúng:
Cho tam giác nhọn ABC nội tiếp (O) có AC = 3cm. Kẻ tiếp tuyến xAy với (O). Từ C kẻ CM // xy (M AB). Chọn câu đúng.
Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy điểm M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). Gọi I là trung điểm MA, K là giao điểm của BI với (O). Giả sử MK cắt (O) tại C. Đường thẳng MA song song với đường thẳng
Cho tam giác nhọn ABC nội tiếp (O). Kẻ tiếp tuyến xAy với (O). Từ B kẻ BM // xy (M AC). Khi đó tích AM. AC bằng
Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy điểm M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). Gọi I là trung điểm MA, K là giao điểm của BI với (O). Tam giác nào dưới đây đồng dạng với tam giác IKM?