Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM. Độ dài OM tính theo bán kính là:
A. 3R
B. 2R
C. R
D. R
+) Ta có: (góc tạo bởi tiếp tuyến và dây cung với góc ở tâm chắn cung IC) =>
Lại có (do CMI cân tại C)
Do đó OIC đều (vì ) => = 60o
+) Xét OIM vuông tại I có:
cos = => OM = 2R
Đáp án cần chọn là: B
Cho tam giác giác nhọn ABC (AB < AC) nội tiếp (O; R). Gọi BD, CE là hai đường cao của tam giác. Gọi xy là tiếp tuyến tại A của (O; R) và I, K lần lượt là hình chiếu của B, C trên xy. Hệ thức nào dưới đây đúng?
Cho nửa đường tròn (O); đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Khi đó:
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng tiếp xúc với (O) tại C, tiếp xúc với đường tròn (O’) tại D sao cho tia AB cắt đoạn CD. Vẽ đường tròn (I) đi qua ba điểm A, C, D cắt đường thẳng AB tại một điểm thứ hai là E. Chọn câu đúng.
Từ điểm M nằm ngoài (O) kẻ các tiếp tuyến MD; MB và cát tuyến MAC với đường tròn (A nằm giữa M và C). Giả sử . Khi đó: