Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD. Tứ giác ABKL là hình gì?
A. Hình chữ nhật
B. Hình bình hành
C. Hình thang cân
D. Hình thang vuông
Xét tam giác ABD có: M, L lần lượt là trung điểm của AD, BD, do đó ML là đường trung bình của tam giác ABD. Suy ra ML // AB và ML = AB: 2 = 3. Vậy ML nằm trên đường trung bình MI của hình thang ABCD. (1)
Chứng minh tương tự ta có: IK là đường trung bình của tam giác ABC. Do đó, IK // AB và IK = AB : 2 = 3. Vậy IK nằm trên đường trung bình MI của hình thang ABCD. (2)
Từ (1) và (2) suy ra: bồn điểm M, L, K, I nằm trên đường trung bình MI của hình thang ABCD.
Ta có: MI = (AB + CD) = (6 + 18) = 12
(do MI là đường trung bình của hình thang ABCD)
Suy ra KL = MI – ML – KI = 12 – 3 – 3 = 6
Xét tứ giác ABKL có: KL = AB ( = 6); KL // AB.
Do đó ABKL là hình bình hành.
Lại có: BL = BD, AK = AC
Mà AC = BD (đường chéo hình thang cân)
Suy ra AK = BL
Xét hình bình hành ABKL có AK = KL nên suy ra ABKL là hình chữ nhật
Đáp án cần chọn là: A
Cho hình chữ nhật ABCD có AB = a;AD = b. Cho M, N, P, Q là các đỉnh của tứ giác MNPQ và lần lượt thuộc các cạnh AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ.
Cho hình bình hành ABCD có AB = a, BC = b (a > b). Các phân giác trong của góc A, B, C, D tạo thành tứ giác MNPQ. Tính độ dài đường chéo của hình chữ nhật MNPQ theo a, b.
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Tứ giác ADME là hình gì?
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Tính độ dài nhỏ nhất của DE khi M di chuyển trên BC biết AB = 15cm, AC = 20cm.
Cho hình bình hành ABCD có AB = a, BC = b (a > b). Các phân giác trong của góc A, B, C, D tạo thành tứ giác MNPQ. Tứ giác MNPQ là hình gì?
Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD. Tính độ dài các cạnh AB, AL, AK.