Cho a và b là các số nguyên dương thỏa mãn .Tích ab có thể nhận giá trị bằng số nào trong các số dưới đây?
A. 15.
B. 60.
C. 240.
D. Cả ba đáp án trên.
Chọn D.
Ta có
Vậy để thì .
Vì a và b là các số nguyên dương nên suy ra a = 5k, b = 3k với k nguyên dương. Do đó ab = 15k2.
+ 15k2 = 15 ⇔ k2 = 1 ⇒ k = 1 ⇒ ab = 15.
+ 15k2 = 60 ⇔ k2 = 4 ⇒ k = 2 ⇒ ab = 60.
+ 15k2 = 240 ⇔ k2 = 16 ⇒ k = 4 ⇒ ab = 240.
Vậy cả ba đáp án đều đúng.
Cho hàm số Khi đó hàm số y = f(x) liên tục trên các khoảng nào sau đây?
Tìm khẳng định đúng trong các khẳng định sau:
liên tục trên R
liên tục trên khoảng (-1; 1).
liên tục trên đoạn [2; +∞).
Tìm khẳng định đúng trong các khẳng định sau:
(I) liên tục với mọi 1
(II) f(x) = sinx liên tục trên R.
(III) liên tục tại x = 1
Tìm khẳng định đúng trong các khẳng định sau:
liên tục với mọi x.
có giới hạn khi x → 0.
liên tục trên đoạn [-3; 3].
Cho hàm số Hàm số y = f(x) liên tục trên các khoảng nào sau đây?