IMG-LOGO

Câu hỏi:

14/06/2024 129

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{\log _{\sqrt {ab} }}\left( {a{\mkern 1mu} \sqrt[3]{b}} \right) = 3.\] Tính \[{\log _{\sqrt {ab} }}\left( {b{\mkern 1mu} \sqrt[3]{a}} \right).\]

A.\[\frac{1}{3}\]

B.\[ - \frac{1}{3}\]

Đáp án chính xác

C.\[3\]

D.\[ - 3\]

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Sử dụng các công thức: \[{\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y{\mkern 1mu} {\mkern 1mu} \left( {0 < a \ne 1,{\mkern 1mu} {\mkern 1mu} x,y >0} \right)\]</>

\[{\log _{{a^n}}}{b^m} = \frac{m}{n}{\log _a}b{\mkern 1mu} {\mkern 1mu} \left( {0 < a \ne 1,{\mkern 1mu} {\mkern 1mu} b >0} \right)\]</>

Từ giả thiết tính \[{\log _a}b\].

- Biến đổi biểu thức cần tính bằng cách sử dụng các công thức trên, thay \[{\log _a}b\] vừa tính được để tính giá trị biểu thức.

Giải chi tiết:

Theo bài ra ta có:

log√ab(a3√b)=log√ab(3√ab.3√a2)=log√ab3√ab+log√ab3√a2=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37logab(ab3)=logab(ab3.a23)=logabab3+logaba23=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37

\[{\log _{\sqrt {ab} }}\left( {a\sqrt[3]{b}} \right) = {\log _{\sqrt {ab} }}\left( {\sqrt[3]{{ab}}.\sqrt[3]{{{a^2}}}} \right)\]

\[ = {\log _{\sqrt {ab} }}\sqrt[3]{{ab}} + {\log _{\sqrt {ab} }}\sqrt[3]{{{a^2}}}\]

\[ = {\log _{{{\left( {ab} \right)}^{\frac{1}{2}}}}}{\left( {ab} \right)^{\frac{1}{3}}} + \frac{1}{{{{\log }_{{a^{\frac{2}{3}}}}}{{\left( {ab} \right)}^{\frac{1}{2}}}}}\]

\[ = \frac{1}{3}2.{\log _{ab}}\left( {ab} \right) + \frac{1}{{\frac{1}{2}.\frac{3}{2}{{\log }_a}\left( {ab} \right)}}\]

\[ = \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {1 + {{\log }_a}b} \right)}}\]

\[ \Rightarrow \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {1 + {{\log }_a}b} \right)}} = 3\]

\[ \Rightarrow {\log _a}b = - \frac{3}{7}\]

Khi đó ta có:

\[{\log _{\sqrt {ab} }}\left( {b\sqrt[3]{a}} \right) = {\log _{\sqrt {ab} }}\left( {\sqrt[3]{{ab}}\sqrt[3]{{{b^2}}}} \right)\]

\[ = {\log _{\sqrt {ab} }}\sqrt[3]{{ab}} + {\log _{\sqrt {ab} }}\sqrt[3]{{{b^2}}}\]

\[ = {\log _{{{\left( {ab} \right)}^{\frac{1}{2}}}}}{\left( {ab} \right)^{\frac{1}{3}}} + \frac{1}{{{{\log }_{{b^{\frac{2}{3}}}}}{{\left( {ab} \right)}^{\frac{1}{2}}}}}\]

=13.2.logab(ab)+112.32logb(ab)

\[ = \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {{{\log }_b}a + 1} \right)}}\]

\[ = \frac{2}{3} + \frac{4}{3}.\frac{1}{{ - \frac{7}{3} + 1}} = - \frac{1}{3}\].

Đáp án B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 22/06/2022 188

Câu 2:

Phương trình \[{z^4} = 16\] có bao nhiêu nghiệm phức?

Xem đáp án » 22/06/2022 184

Câu 3:

Trong không gian với hệ tọa độ \[Oxyz,\] cho hai đường thẳng \[{d_1}:{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 2}}\] và \[{d_2}:{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 2}}.\] Khoảng cách giữa hai đường thẳng này bằng:

Xem đáp án » 22/06/2022 170

Câu 4:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 22/06/2022 144

Câu 5:

Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]

Xem đáp án » 22/06/2022 141

Câu 6:

Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].

Xem đáp án » 22/06/2022 139

Câu 7:

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 22/06/2022 135

Câu 8:

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?

Xem đáp án » 22/06/2022 134

Câu 9:

Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]

Xem đáp án » 22/06/2022 124

Câu 10:

Trong không gian với hệ trục tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{1}\] và mặt phẳng \[\left( Q \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x - y + 2z = 0.\] Viết phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {0; - 1;{\mkern 1mu} {\mkern 1mu} 2} \right),\] song song với đường thẳng \[\Delta \] và vuông góc với mặt phẳng \[\left( Q \right).\]

Xem đáp án » 22/06/2022 116

Câu 11:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]

Xem đáp án » 22/06/2022 114

Câu 12:

Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?

Xem đáp án » 22/06/2022 112

Câu 13:

Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]

Xem đáp án » 22/06/2022 107

Câu 14:

Cho hàm số \[y = {x^3} - 3{x^2} + 2\]. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \[A\left( {1;0} \right)\]?

Xem đáp án » 22/06/2022 105

Câu 15:

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là:

Xem đáp án » 22/06/2022 94

Câu hỏi mới nhất

Xem thêm »
Xem thêm »