IMG-LOGO

Câu hỏi:

18/06/2024 112

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = AC = a\), \(AA' = \sqrt 2 a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(AB'A'C\) là

A.\(\frac{{\pi {a^3}}}{3}\).

Đáp án chính xác

B.\(4\pi {a^3}\).

C.\(\pi {a^3}\).

D.\(\frac{{4\pi {a^3}}}{3}\).

Trả lời:

verified Giải bởi Vietjack

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = AC = a\), \(AA' = \sqrt 2 a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(AB'A'C\) là (ảnh 1)

Khối cầu ngoại tiếp tứ diện \(AB'A'C\) là khối cầu ngoại tiếp lăng trụ \(BAC.A'B'C'\)

Gọi \(D,E\) lần lượt là trung điểm của \(BC,B'C';O\) là trung điểm của \(DE\)

\( \Rightarrow O\) là tâm khối cầu ngoại tiếp lăng trụ \(BAC.A'B'C'\) (do đáy là \(\Delta ABC\) vuông cân tại \(A)\)

Ta có: \(OD = \frac{{AA'}}{2} = \frac{{a\sqrt 2 }}{2}\) và \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2}} = a\sqrt 2 \Rightarrow AD = \frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Bán kính khối cầu ngoại tiếp lăng trụ \(ABC.A'B'C'\) là \(R = OA = \sqrt {A{D^2} + O{D^2}} = \sqrt {{a^2}} = a\)

Vậy thể tích khối cầu cần tính là \(V = \frac{4}{3}\pi {R^3} = \frac{{4\pi {a^3}}}{3}.\)

Đáp án A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên \(x\)\( - \infty \)                     \( - 3\)                            0                          3             (ảnh 1)

Tìm \(m\) để phương trình \(2f(x) + m = 0\) có đúng \(3\) nghiệm phân biệt

Xem đáp án » 22/06/2022 144

Câu 2:

Cho hàm số \(y = {x^3} - 6{x^2} + 7x + 5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:

Xem đáp án » 22/06/2022 139

Câu 3:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \[A\]. Biết \(AB = AA' = a\), \(AC = 2a\). Gọi \(M\) là trung điểm của \[AC\]. Diện tích mặt cầu ngoại tiếp tứ diện \(MA'B'C'\) bằng

Xem đáp án » 22/06/2022 117

Câu 4:

Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:

Xem đáp án » 22/06/2022 115

Câu 5:

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].

Xem đáp án » 22/06/2022 111

Câu 6:

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} -  (ảnh 1)

Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} - 2\left| {x - 1} \right| - 2x + m} \right)\) có đúng \(9\) điểm cực trị?

Xem đáp án » 22/06/2022 106

Câu 7:

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + 2{x^2} + 1}}{{{x^2} + 1}}\) là

Xem đáp án » 22/06/2022 105

Câu 8:

Cho hàm số \(f(x) = - \frac{1}{3}{x^3} + m{x^2} + \left( {3m + 2} \right)x - 5\) . Tập hợp các giá trị của tham số \(m\) để hàm số nghịch biến trên \(\mathbb{R}\) là \(\left[ {a;\,b} \right]\). Khi đó \(2a - b\) bằng

Xem đáp án » 22/06/2022 99

Câu 9:

Cho hình chóp \[S.ABCD\], đáy là hình chữ nhật tâm \[O\], \[AB = a\], \[AD = a\sqrt 3 \], \[SA = 3a\], \[SO\] vuông góc với mặt đáy \[\left( {ABCD} \right)\]. Thể tích khối chóp bằng

Xem đáp án » 22/06/2022 98

Câu 10:

Số giá trị nguyên của tham số \(m\) để hàm số \(y = m{x^4} - \left( {m - 3} \right){x^2} + {m^2}\)không có điểm cực đại là

Xem đáp án » 22/06/2022 97

Câu 11:

Tính thể tích \[V\] của khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) biết độ dài cạnh đáy của lăng trụ bằng \[2\] đồng thời góc tạo bởi \(A'C\) và đáy \[\left( {ABCD} \right)\] bằng \[30^\circ \].

Xem đáp án » 22/06/2022 93

Câu 12:

Cho \(4\) số \(a,\,b,\,c,\,d\) thỏa mãn điều kiện \({a^2} + {b^2} = 4a + 6b - 9\) và \(3c + 4d = 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2}\) ?

Xem đáp án » 22/06/2022 92

Câu 13:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Xem đáp án » 22/06/2022 85

Câu 14:

Hàm số \(y = \left| {{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)} \right|\) có bao nhiêu điểm cực trị?

Xem đáp án » 22/06/2022 83

Câu 15:

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:

Xem đáp án » 22/06/2022 83

Câu hỏi mới nhất

Xem thêm »
Xem thêm »