Tính đạo hàm của hàm số sau: y = (x2 – x + 1)3 .(x2 + x + 1)2
A. y’ = (x2 – x + 1)2[3(2x – 1)(x2 + x + 1) + 2(2x + 1)(x2 – x + 1)]
B. y’ = (x2 – x + 1)2(x2 + x + 1)[3(2x – 1)(x2 + x + 1) + (x2 – x + 1)]
C. y’ = (x2 – x + 1)2(x2 + x + 1)[3(2x – 1)(x2 + x + 1) + 2(2x + 1)(x2 – x + 1)]
D. y’ = (x2 – x + 1)2(x2 + x + 1)[3(2x – 1)(x2 + x + 1) – 2(2x + 1)(x2 – x + 1)]
Chọn C.
Đầu tiên sử dụng quy tắc nhân.
y' = [(x2 – x + 1)3]’(x2 + x + 1)2 + [(x2 + x + 1)2]’(x2 – x + 1)3.
Sau đó sử dụng công thức
y' = 3(x2 – x + 1)2(x2 – x + 1)’(x2 + x + 1) + 2(x2 + x + 1)(x2 + x + 1)’(x2 – x + 1)3
y’ = 3(x2 – x + 1)2(2x – 1)(x2 + x + 1)2 + 2(x2 + x + 1)(2x + 1)(x2 – x + 1)3
y’ = (x2 – x + 1)2(x2 + x + 1)[3(2x – 1)(x2 + x + 1) + 2(2x + 1)(x2 – x + 1)].
Tính đạo hàm của hàm số sau: y = (x2 – x + 1)3.(x2 + x + 1)2
Đạo hàm của hàm số sau là đa thức bậc mấy: y = (1 + 2x)(2 + 3x2)(3 – 4x3).