IMG-LOGO

Câu hỏi:

11/06/2024 52

Biết rằng giá trị lớn nhất của hàm số \(y = \frac{{\cos x + m}}{{2 - \cos x}}\) trên đoạn \(\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\) bằng 1. Mệnh đề nào sau đây đúng?

A.\(\left| m \right| >2.\)

B.\(\left| m \right| = 1.\)

C.\(1 < \left| m \right| \le 2.\)

D. \(\left| m \right| < 1.\)

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D.

Đặt \(t = \cos x,x \in \left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right] \Rightarrow t \in \left[ {0;1} \right].\)

Xét hàm số \(y = \frac{{t + m}}{{2 - t}}\) trên đoạn \(\left[ {0;1} \right]\)

Ta có: \(y' = \frac{{2 + m}}{{{{\left( {2 - t} \right)}^2}}}.\)

Nếu \(2 + m >0 \Leftrightarrow m >- 2\) thì \(y' >0,\) hàm số đồng biến trên \(\left[ {0;1} \right],\) suy ra:

\(\mathop {\max }\limits_{\left[ {0;\frac{1}{2}} \right]} f\left( t \right) = f\left( 1 \right) \Leftrightarrow f\left( 1 \right) = 1 \Leftrightarrow \frac{{1 + m}}{1} = 1 \Leftrightarrow m = 0.\)

Nếu \(2 + m < 0 \Leftrightarrow m < - 2\) thì \(y' < 0,\) hàm số nghịch biến trên \(\left[ {0;1} \right],\) suy ra:

\(\mathop {\max }\limits_{\left[ {0;\frac{1}{2}} \right]} f\left( t \right) = f\left( 0 \right) \Leftrightarrow f\left( 0 \right) = 1 \Leftrightarrow \frac{m}{2} = 1 \Leftrightarrow m = 2\) (không thỏa mãn).

Vậy \(m = 0 \Rightarrow \left| m \right| < 1.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng

Xem đáp án » 23/06/2022 135

Câu 2:

Tập nghiệm của bất phương trình \({\log _5}x \ge 2\) là 

Xem đáp án » 23/06/2022 132

Câu 3:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số m để trên đoạn (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?

Xem đáp án » 23/06/2022 123

Câu 4:

Diện tích mặt cầu có bán kính \(r = 2\) bằng 

Xem đáp án » 23/06/2022 96

Câu 5:

Điểm cực đại của đồ thị hàm số \(y = {x^3} - 3x + 1\) là  

Xem đáp án » 23/06/2022 95

Câu 6:

Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\mathbb{R}?\) 

Xem đáp án » 23/06/2022 89

Câu 7:

Cho phương trình \(\log _2^2x + 2m{\log _2}x + 2m - 2 = 0\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} \le 64{x_2} \le 4096{x_1}?\) 

Xem đáp án » 23/06/2022 88

Câu 8:

Cho hàm số \[f(x)\] có \[f(0) = 0\]. Biết rằng \[y = f'(x)\] là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số \[g(x) = f(f(x) - x)\] có bao nhiêu điểm cực trị ?

Cho hàm số f(x) có f(0) = 0. Biết rằng y = f'(x) là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số (ảnh 1)

Xem đáp án » 23/06/2022 84

Câu 9:

Tập xác định của hàm số \(y = {x^{ - 2}}\) là 

Xem đáp án » 23/06/2022 84

Câu 10:

Cho hàm số \[f(x)\] có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: Giá trị cực tiểu của hàm số đã cho bằng (ảnh 1)

Giá trị cực tiểu của hàm số đã cho bằng

Xem đáp án » 23/06/2022 80

Câu 11:

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của \(f'\left( x \right)\) như sau:

Cho hàm số y=f(x) có bảng xét dấu của f'(x) như sau: Hàm số y = f(1-x) đồng biến trên khoảng nào dưới đây? (ảnh 1)

 Hàm số \(y = f\left( {1 - x} \right)\) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 23/06/2022 79

Câu 12:

Chọn ngẫu nhiên 8 học sinh từ một nhóm học sinh có 7 học sinh nam và 5 học sinh nữ để xếp thành một hàng ngang, xác suất để hàng đó có 5 học sinh nam và 3 học sinh nữ bằng

Xem đáp án » 23/06/2022 78

Câu 13:

Với \(a\) là số thực dương tùy ý, \({\log _2}{a^3}\) bằng 

Xem đáp án » 23/06/2022 77

Câu 14:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \cos x\) bằng

Xem đáp án » 23/06/2022 76

Câu 15:

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 36x\) trên đoạn \(\left[ {2;20} \right]\) bằng 

Xem đáp án » 23/06/2022 76

Câu hỏi mới nhất

Xem thêm »
Xem thêm »