Trong không gian \[Oxyz,\] mặt phẳng qua \(A\left( {3;4;1} \right)\) và song song với mặt phẳng \(\left( {Oxy} \right)\) có phương trình là
A.\(x - 3 = 0.\)
B.\(z - 1 = 0.\)
C.\(y - 4 = 0.\)
D. \(3x + 4y + z = 0.\)
Đáp án B.
Mặt phẳng qua \(A\left( {3;4;1} \right)\) và song song với mặt phẳng \(\left( {Oxy} \right)\) có VTPT: \(\overrightarrow n = \overrightarrow k \left( {0;0;1} \right)\)
Có phương trình: \(0\left( {x - 3} \right) + 0\left( {y - 4} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow z = 1.\)
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(2a.\) Thể tích khối trụ bằng
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
Cho khối nón có chu vi đáy \(8\pi \) và chiều cao \(h = 3.\) Thể tích khối nón đã cho bằng?
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 5x + 4\) và trục \(Ox.\) Thể tích của khối tròn xoay sinh ra khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OB = OC = a\sqrt 6 ,OA = a.\) Thể tích khối tứ diện đã cho bằng
Biết \(\int\limits_0^2 {f\left( x \right)dx} = 2020,\) khi đó \(I = \int\limits_0^4 {\left[ {f\left( {\frac{x}{2}} \right)} \right]dx} \) bằng
Trong không gian \(Oxyz,\) cho điểm \(A\left( {4; - 1;3} \right)\) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}.\) Tọa độ điểm \(M\) là điểm đối xứng với điểm \(A\) qua \(d\) là
Nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 2\) là
Cho số phức \(z = \frac{{1 + 2i}}{{1 - i}}.\) Trong mặt phẳng tọa độ, điểm biểu diễn số phức \(z\) là điểm nào dưới đây?
Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( \alpha \right):x + 2y - 1 = 0.\) Vectơ nào sau đây là một vectơ pháp tuyến của \(\left( \alpha \right)?\)
Cho khối lăng trụ có diện tích đáy \(B = 8\) và chiều cao \(h = 6.\) Thể tích của khối lăng trụ đã cho bằng
Cho các số thực \(a,b,c\) thỏa mãn \({a^{{{\log }_3}7}} = 27,{b^{{{\log }_7}11}} = 49,{c^{{{\log }_{11}}25}} = \sqrt {11} .\) Giá trị của biểu thức \(A = {a^{{{\left( {{{\log }_3}7} \right)}^2}}} + {b^{{{\left( {{{\log }_7}11} \right)}^2}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}_2}}}\) là
Tìm tất cả giá trị thực của tham số \(m\) sao cho khoảng \(\left( {2;3} \right)\) thuộc tập nghiệm của bất phương trình \({\log _5}\left( {{x^2} + 1} \right) >{\log _5}\left( {{x^2} + 4x + m} \right) - 1.\)