Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a bằng
A. \[\frac{{{a^3}\sqrt 2 }}{3}\].
B. \[\frac{{{a^3}\sqrt 3 }}{6}\].
C. \[\frac{{{a^3}\sqrt 3 }}{2}\].
D. \[\frac{{{a^3}\sqrt 3 }}{4}\].
Xét hình lăng trụ tam giác đều \(ABC.A'B'C'\) như hình vẽ
Tam giác \(ABC\) đều nên có diện tích \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}.\)
Chiều cao của khối lăng trụ là \(AA' = 2a,\) suy ra thể tích của khối lăng trụ tam giác đều \(ABC.A'B'C'\) là \(V = AA'.{S_{\Delta ABC}} = \frac{{{a^3}\sqrt 3 }}{2}\) (đvtt).
Đáp án C
Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là
Cho hàm số\(y = f(x)\) liên tục trên\(\mathbb{R}\) và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\frac{{{m^3} + 5m}}{{\sqrt {{f^2}(x) + 1} }} = {f^2}(x) + 6\) có đúng bốn nghiệm thực phân biệt.
Có bao nhiêu giá trị nguyên dương của tham số \(m\) không vượt quá 2020 để hàm số \(y = - {x^4} + (m - 5){x^2} + 3m - 1\) có ba điểm cực trị
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Mặt phẳng \[(AB'C')\] chia khối lăng trụ \[ABC.A'B'C'\] thành hai khối đa diện \[AA'B'C'\] và \[ABCC'B'\]có thể tích lần lượt là \[{V_1},\,{V_2}\]. Khẳng định nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'(x)\) có bảng biến thiên như hình dưới.
Bất phương trìnhn \(x.f\left( x \right) >mx + 1\) nghiệm đúng với mọi \(x \in \left[ {1;2020} \right)\) khi
Gọi S là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số \(1;2;3;4;5;6\). Lấy ngẫu nhiên một số từ S. Xác suất chọn được số có ba chữ số 1, các chữ số còn lại xuất hiện không quá một lần và hai chữ số chẵn không đứng cạnh nhau bằng
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau
Khẳng định nào sau đây đúng?
Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho đa giác đều có 10 cạnh. Số tam giác có 3 đỉnh là ba đỉnh của đa giác đều đã cho là
Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là
Có bao nhiêu giá trị của tham số \(m\) để hàm số \(y = {x^3} + \frac{1}{2}({m^2} - 1){x^2} + 1 - m\) có điểm cực đại là \(x = - 1\)?
Tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \frac{{1 + \sqrt {x + 1} }}{{{x^2} - 2x - m}}\) có đúng hai tiệm cận đứng là