IMG-LOGO

Câu hỏi:

23/07/2024 61

Cho hàm số\(y = {x^3} + (m - 1){x^2} - 3mx + 2m + 1\) có đồ thị C(m), biết rằng đồ thị\(({C_m})\) luôn đi qua hai điểm cố định\(A,\,B.\) Có bao nhiêu số nguyên dương \(m\)thuộc đoạn \(\left[ { - 2020;2020} \right]\) để \(({C_m})\) có tiếp tuyến vuông góc với đường thẳng \(AB\)?

A.4041.

B. 2021.

C. 2019.

D. 2020.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hàm số được viết lại thành \(\left( {{x^2} - 3x + 2} \right)m + {x^3} - {x^2} + 1 - y = 0.\)

Một điểm \(M\left( {{x_0};{y_0}} \right)\) là điểm cố định của đồ thị hàm số thì phương trình \(\left( {x_0^2 - 3x_0^{} + 2} \right)m + x_0^3 - x_0^2 + 1 - {y_0} = 0\) phải nghiệm đúng với mọi \(m,\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}x_0^2 - 3{x_0} + 2 = 0\\x_0^3 - x_0^2 + 1 - {y_0} = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}{x_0} = 1;{y_0} = 1\\{x_0} = 2;{y_0} = 5\end{array} \right..\)

Giả sử \(A\left( {1;1} \right),B\left( {2;5} \right) \Rightarrow \overrightarrow {AB} = \left( {1;4} \right)\) khi đó hệ số góc của đường thẳng \(AB\) là \(k = 4.\)

Đặt \(f\left( x \right) = {x^3} + \left( {m - 1} \right){x^2} - 3mx + 2m + 1\)

Để trên đồ thị hàm số có điểm mà tiếp tuyến tại đó vuông góc với đường thẳng \(AB\) thì hệ số góc tại tiếp điểm phải bằng \(k' = - \frac{1}{4}.\) Điều đó xảy ra khi và chỉ khi \(f'\left( x \right) = - \frac{1}{4}\) có nghiệm.

Ta có \(f'\left( x \right) = 3{x^2} + 2\left( {m - 1} \right)x - 3m.\)

Phương trình \(f'\left( x \right) = - \frac{1}{4} \Leftrightarrow 3{x^2} + 2\left( {m - 1} \right)x - 3m = - \frac{1}{4}\left( 1 \right).\)

Phương trình (1) có nghiệm khi \(\Delta ' \ge 0 \Leftrightarrow m \in \left( { - \infty ;\frac{{ - 7 - 4\sqrt 3 }}{2}} \right] \cup \left[ {\frac{{ - 7 + 4\sqrt 3 }}{2}; + \infty } \right).\)

Với \(\frac{{ - 7 + 4\sqrt 3 }}{2} \approx - 0,03\) nên các số nguyên dương \(m \in \left[ { - 2020;2020} \right]\) là \(\left\{ {1;2;3;...;2020} \right\}.\)

Vậy có 2020 số thỏa mãn yêu cầu bài toán.

Đáp án D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

Xem đáp án » 23/06/2022 139

Câu 2:

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 23/06/2022 138

Câu 3:

Cho hàm số\(y = f(x)\) liên tục trên\(\mathbb{R}\) và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\frac{{{m^3} + 5m}}{{\sqrt {{f^2}(x) + 1} }} = {f^2}(x) + 6\) có đúng bốn nghiệm thực phân biệt.

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để phương trình (ảnh 1)

Xem đáp án » 23/06/2022 137

Câu 4:

Có bao nhiêu giá trị nguyên dương của tham số \(m\) không vượt quá 2020 để hàm số \(y = - {x^4} + (m - 5){x^2} + 3m - 1\) có ba điểm cực trị

Xem đáp án » 23/06/2022 132

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau: Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là (ảnh 1)

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Xem đáp án » 23/06/2022 125

Câu 6:

Mặt phẳng \[(AB'C')\] chia khối lăng trụ \[ABC.A'B'C'\] thành hai khối đa diện \[AA'B'C'\] và \[ABCC'B'\]có thể tích lần lượt là \[{V_1},\,{V_2}\]. Khẳng định nào sau đây đúng?

Xem đáp án » 23/06/2022 116

Câu 7:

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'(x)\) có bảng biến thiên như hình dưới.

Cho hàm số y=f(x). Hàm số y = f'(x) có bảng biến thiên như hình dưới. Bất phương trình x*f(x) > mx+1 nghiệm đúng với mọi  (ảnh 1)

Bất phương trìnhn \(x.f\left( x \right) >mx + 1\) nghiệm đúng với mọi \(x \in \left[ {1;2020} \right)\) khi

Xem đáp án » 23/06/2022 111

Câu 8:

Gọi S là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số \(1;2;3;4;5;6\). Lấy ngẫu nhiên một số từ S. Xác suất chọn được số có ba chữ số 1, các chữ số còn lại xuất hiện không quá một lần và hai chữ số chẵn không đứng cạnh nhau bằng

Xem đáp án » 23/06/2022 106

Câu 9:

Cho hàm số \(y = f(x)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Khẳng định nào sau đây đúng? (ảnh 1)

Khẳng định nào sau đây đúng?

Xem đáp án » 23/06/2022 103

Câu 10:

Cho hàm số \[y = \frac{{x + m}}{{x + 1}}\] (\[m\] là tham số thực) thoả mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{9}{2}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 23/06/2022 99

Câu 11:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? (ảnh 1)

Xem đáp án » 23/06/2022 98

Câu 12:

Cho đa giác đều có 10 cạnh. Số tam giác có 3 đỉnh là ba đỉnh của đa giác đều đã cho là

Xem đáp án » 23/06/2022 96

Câu 13:

Số giá trị nguyên của tham số thực \(m\) để hàm số \(y = \frac{{mx - 2}}{{ - 2x + m}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2};\, + \infty } \right)\) là

Xem đáp án » 23/06/2022 95

Câu 14:

Tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \frac{{1 + \sqrt {x + 1} }}{{{x^2} - 2x - m}}\) có đúng hai tiệm cận đứng là

Xem đáp án » 23/06/2022 87

Câu 15:

Có bao nhiêu giá trị của tham số \(m\) để hàm số \(y = {x^3} + \frac{1}{2}({m^2} - 1){x^2} + 1 - m\) có điểm cực đại là \(x = - 1\)?

Xem đáp án » 23/06/2022 87

Câu hỏi mới nhất

Xem thêm »
Xem thêm »