IMG-LOGO

Câu hỏi:

10/07/2024 92

Cho hàm số \[f\left( x \right) = \left( {x - 2} \right)\sqrt {{x^2} - 1} \], tìm tập nghiệm S của bất phương trình \[f\prime (x) \le \sqrt {{x^2} - 1} \]

A. \[S = \left( {1;2} \right]\]

Đáp án chính xác

B. \[S = \left[ {1;2} \right)\]

C. \[S = \left( {1;2} \right)\]

D. \[S = \left[ {1;2} \right]\]

Trả lời:

verified Giải bởi Vietjack

Bước 1:

\[\begin{array}{*{20}{l}}{f'\left( x \right) = \sqrt {{x^2} - 1} + \left( {x - 2} \right).\frac{x}{{\sqrt {{x^2} - 1} }}}\\{ = \frac{{\left( {{x^2} - 1} \right) + \left( {x - 2} \right).x}}{{\sqrt {{x^2} - 1} }}}\\{ = \frac{{2{x^2} - 2x - 1}}{{\sqrt {{x^2} - 1} }}}\end{array}\]

Bước 2:

\[f\prime (x) \le \sqrt {{x^2} - 1} \]

\[\begin{array}{l} \Leftrightarrow \frac{{2{x^2} - 2x - 1}}{{\sqrt {{x^2} - 1} }} \le \sqrt {{x^2} - 1} \\ \Leftrightarrow \frac{{2{x^2} - 2x - 1}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} \le 0\end{array}\]

\[ \Leftrightarrow \frac{{2{x^2} - 2x - 1 - ({x^2} - 1)}}{{\sqrt {{x^2} - 1} }} \le 0\]

\[\begin{array}{l} \Leftrightarrow \frac{{{x^2} - 2x}}{{\sqrt {{x^2} - 1} }} \le 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} - 2x \le 0}\\{{x^2} - 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 \le x \le 2}\\{\left[ {\begin{array}{*{20}{c}}{x > 1}\\{x < - 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow 1 < x \le 2\\ = > S = (1;2]\end{array}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = {x^3} - 3{x^2} + 1\]. Đạo hàm của hàm số f(x) âm khi và chỉ khi

Xem đáp án » 25/06/2022 116

Câu 2:

Tính đạo hàm của hàm số \[y = \frac{{\sin 2x + 2}}{{\cos 2x + 3}}\]

Xem đáp án » 25/06/2022 107

Câu 3:

Tính đạo hàm của hàm số \[y = (3x - 1)\sqrt {{x^2} + 1} \]

Xem đáp án » 25/06/2022 105

Câu 4:

Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 1\,khi\,x > 1}\\{2x + 2\,\,khi\,x \le 1}\end{array}} \right.\) ta được:

Xem đáp án » 25/06/2022 100

Câu 5:

Khẳng định nào sau đây sai

Xem đáp án » 25/06/2022 100

Câu 6:

Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai

Xem đáp án » 25/06/2022 98

Câu 7:

Cho hàm số \[f(x) = {(2x - 1)^3}\]. Giá trị của f′(1) bằng

Xem đáp án » 25/06/2022 97

Câu 8:

Cho hàm số y=f(x) có đạo hàm trên  \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)

Xem đáp án » 25/06/2022 97

Câu 9:

Cho hàm số \[y = \sqrt {10x - {x^2}} \]. Giá trị của y′(2) bằng

Xem đáp án » 25/06/2022 96

Câu 10:

Hàm số \[y = {\tan ^2}\frac{x}{2}\] có đạo hàm là:

Xem đáp án » 25/06/2022 96

Câu 11:

Cho hàm số f(x) có đạo hàm \[f\prime (x) = 2x + 4\;\] với mọi \[x \in \mathbb{R}\]. Hàm số \[g(x) = 2f(x) + 3x - 1\;\] có đạo hàm là

Xem đáp án » 25/06/2022 95

Câu 12:

Đạo hàm của hàm số \[y = \tan x - \cot x\] là

Xem đáp án » 25/06/2022 95

Câu 13:

Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]

Xem đáp án » 25/06/2022 89

Câu 14:

Đạo hàm của hàm số \[y = 2\sin x - 3\cos x\] là

Xem đáp án » 25/06/2022 89

Câu 15:

Đạo hàm của hàm số \[y = {(5x - 1)^2}\] là

Xem đáp án » 25/06/2022 88

Câu hỏi mới nhất

Xem thêm »
Xem thêm »