IMG-LOGO

Câu hỏi:

10/07/2024 122

Rút gọn biểu thức \[B = \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\] ta được kết quả là:

A.\[\frac{{{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]

B. \[\frac{{{a^{2\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]

C. \[\frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]

Đáp án chính xác

D. 0

Trả lời:

verified Giải bởi Vietjack

Ta có:\[B = \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = \frac{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)\left( {{a^{\sqrt 2 }} + {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\]

\[ = \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}} + 1 = \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }} + {a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:

Xem đáp án » 13/10/2022 217

Câu 2:

Với \[a > 1,m > 0,m \in Z\;\] thì:

Xem đáp án » 13/10/2022 163

Câu 3:

Mệnh đề nào đúng với mọi số thực x,y?

Xem đáp án » 13/10/2022 157

Câu 4:

Với giá trị nào của a thì đẳng thức \[\,\,\,\,\,\sqrt {a.\sqrt[3]{{a.\sqrt[4]{a}}}} = \sqrt[{24}]{{{2^5}}}.\frac{1}{{\sqrt {{2^{ - 1}}} }}\]đúng?

Xem đáp án » 13/10/2022 151

Câu 5:

 Đơn giản biểu thức \[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\] ta được:

Xem đáp án » 13/10/2022 144

Câu 6:

Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?

Xem đáp án » 13/10/2022 141

Câu 7:

Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].

Xem đáp án » 13/10/2022 141

Câu 8:

Cho \[m,n \in Z\], khi đó:

Xem đáp án » 13/10/2022 139

Câu 9:

Giá trị biểu thức \[P = \frac{{{{125}^6}.\left( { - {{16}^3}} \right)2.\left( { - {2^3}} \right)}}{{{{25}^3}.{{\left( { - {5^2}} \right)}^4}}}\] là:

Xem đáp án » 13/10/2022 139

Câu 10:

Cho \[a > 0,n \in Z,n \ge 2\], chọn khẳng định đúng:

Xem đáp án » 13/10/2022 137

Câu 11:

Rút gọn biểu thức \[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\left( {a > 0,b > 0,a \ne b} \right)\] ta được kết quả là:

Xem đáp án » 13/10/2022 133

Câu 12:

Đơn giản biểu thức \[P = \left( {{a^{\frac{1}{4}}} - {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{4}}} + {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{2}}} + {b^{\frac{1}{2}}}} \right)\,\,\,\,(a,b > 0)\] ta được:

Xem đáp án » 13/10/2022 130

Câu 13:

Với \[1 < a < b,m \in {N^ * }\]thì:

Xem đáp án » 13/10/2022 126

Câu 14:

Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:

Xem đáp án » 13/10/2022 124

Câu 15:

Rút gọn biểu thức: \[C = \frac{{{{\left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)}^2}}}{{\sqrt[3]{{ab}}}}:\left( {2 + \sqrt[3]{{\frac{a}{b}}} + \sqrt[3]{{\frac{b}{a}}}} \right)\] ta được kết quả là:

Xem đáp án » 13/10/2022 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »